• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

关于广义孪生素数的几个结论

涂象初, 涂承宇, 涂承媛

涂象初, 涂承宇, 涂承媛. 关于广义孪生素数的几个结论[J]. 北京工业大学学报, 2006, 32(6): 552-557.
引用本文: 涂象初, 涂承宇, 涂承媛. 关于广义孪生素数的几个结论[J]. 北京工业大学学报, 2006, 32(6): 552-557.
TU Xiang-chu, TU Cheng-yu, TU Cheng-yuan. Some Conclusions About the Generalized Primes-twin and Others[J]. Journal of Beijing University of Technology, 2006, 32(6): 552-557.
Citation: TU Xiang-chu, TU Cheng-yu, TU Cheng-yuan. Some Conclusions About the Generalized Primes-twin and Others[J]. Journal of Beijing University of Technology, 2006, 32(6): 552-557.

关于广义孪生素数的几个结论

详细信息
    作者简介:

    涂象初(1929-),男,江西九江人,教授.

  • 中图分类号: O156.1

Some Conclusions About the Generalized Primes-twin and Others

  • 摘要: 基于Chebyshev不等式以及对所有相关子集平均浓度的计算,提出并证明了下列引理、定理,以及4条推论:[引理1]至少有1个广义孪生素数集合(或称2素数组子集)是无限集合;[定理1]全部的或无限多的广义孪生素数集合是无限集合;[推论1]至少有1个3生素数集合(或称3素数组子集)是无限集合;[推论2]全部的或无限多的3生素数集合是无限集合;[推论3]普遍地说,至少有1个h生素数集合(或称h素数组子集)是无限集合(h是≥2的整数);[推论4]普遍地说,全部的或无限多的h生素数集合是无限集合(h是≥2的整数).
    Abstract: Basing on Chebyshev inequality and on the computation of average concentration of all related subsets, the authors put forward and proved the following lemma, theorem, and the four corollaries: [Lemma 1] There exists at least one of the sets of generalized prime-twins (namely one subset of the set of 2-primes group), which is an infinite set. [Theorem 1] All the sets of generalized prime-twins or infinitely many ones among these sets are infinite sets. [Corollary 1] There exists at least one of the sets of primes-triplet (namely one subset of the set of 3-primes-group), which is an infinite set. [Corollary 2] All the sets of primes-triplet or infinitely many ones among these sets are infinite sets. [Corollary 3] There exists at least one of the sets of h-primes-tuplet (namely one subset of the set of h-primes-group) which is an infinite set, where h is an inte ger≥2. [Corollary 4] All the sets of h-primes-tuplet or infinitely many ones among these sets are infinite sets, where h is an integer≥2.
  • [1]

    YANDELL B H. Hilbert's problems and their solvers [M]. Natick, Massachusetts: A K Fetters Ltd, 2002: 203-206.

    [2]

    GUY R K. Unsolved problems in number theorem Vol. 1[M]. 2nd ed. New York: Springer-Verlag Inc, 1994: 10-25.

    [3]

    SHANKS D. Solved and unsolved problems in number theorem Vol. 1 [M]. Washington D C: Spartan Books, 1962: 30-31.

    [4]

    SONG Y Y. Number theory for computing[M]. 2nd ed. New York: Springer-Verlag, 2000: 4-5.

    [5]

    CRANDALL R, POMERANCEC. Prime numbers, A computational perspective [M]. New York: Springer-Verlag, 2001: 9-15, 74-75.

    [6] 潘承洞,潘承彪.素数定理的初等证明[M].上海:上海科学技术出版社,1988:38-41.
计量
  • 文章访问数:  14
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-11-01
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回