• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

基于混合自适应遗传算法HEV系统参数的优化

刘旭东, 范青武, 段建民, 周大森

刘旭东, 范青武, 段建民, 周大森. 基于混合自适应遗传算法HEV系统参数的优化[J]. 北京工业大学学报, 2009, 35(7): 904-909.
引用本文: 刘旭东, 范青武, 段建民, 周大森. 基于混合自适应遗传算法HEV系统参数的优化[J]. 北京工业大学学报, 2009, 35(7): 904-909.
LIU Xu-dong, FAN Qing-wu, DUAN Jian-min, ZHOU Da-sen. Optimization of HEV System Parameters Based on Hybrid Adaptive Genetic Algorithm[J]. Journal of Beijing University of Technology, 2009, 35(7): 904-909.
Citation: LIU Xu-dong, FAN Qing-wu, DUAN Jian-min, ZHOU Da-sen. Optimization of HEV System Parameters Based on Hybrid Adaptive Genetic Algorithm[J]. Journal of Beijing University of Technology, 2009, 35(7): 904-909.

基于混合自适应遗传算法HEV系统参数的优化

基金项目: 

北京工业大学青科基金资助项目(X1024000200801).

详细信息
    作者简介:

    刘旭东(1975一),男,河北石家庄人,讲师.

  • 中图分类号: U469.72

Optimization of HEV System Parameters Based on Hybrid Adaptive Genetic Algorithm

  • 摘要: 选择优化算法是混合动力电动汽车系统参数优化的一个重要内容.针对基本遗传算法存在着易早熟、收敛速度慢的缺陷,提出了一种混合自适应遗传算法.测试结果表明,该算法既具有良好的全局收敛性,又具有较快的收敛速度.将该算法应用到混合动力电动汽车系统参数优化问题中,取得了较为满意的优化结果和收敛效果.根据优化结果,对一辆串联式混合动力中巴的发动机/发电机组进行了优化设计.
    Abstract: Selecting optimization algorithm is an important part in the optimization of HEV system parameters.To overcome the shortcomings of prematurity and slow convergence speed in simple genetic algorithm, a hybrid adaptive genetic algorithm is proposed.Testing results show that the proposed algorithm has both good whole astringency and fast convergence speed.The new hybrid adaptive genetic algorithm is applied to the optimization of HEV system parameters and satisfactory optimization results and convergence effects are obtained.Based on the optimization results, an engine/generator set of a series hybrid electric mini-bus is designed optimally.
  • [1] 田光宇, 彭涛, 林成涛, 等.混合动力电动汽车关键技术[J].汽车技术, 2002, 1:8-11.TIAN Guang-yu, PENG Tao, LIN Cheng-tao, et al.Key techniques of hybrid electric vehicle[J].Automobile Technology, 2002, 1:8-11. (in Chinese)
    [2]

    ASSANIS D, DELAGRAMMATIKAS G, FELLINI R, et al.An optimization approach to hybrid electric propulsion systemdesign[J].J Mech Struct Machines, 1999, 27 (4):393-421.

    [3]

    MARKEL T, WIPKE K.Optimization techniques for hybrid electric vehicle analysis using ADVISOR[C]//Proceedings ofthe ASME International Mechanical Engineering Congress and Exposition.New York:ASME, 2001:147-155.

    [4]

    GALDI V, IPPOLITO L, PICCOLO A, et al.A genetic-based methodology for hybrid electric vehicles sizing[J].SoftComputing, 2001, 5 (6):451-457.

    [5]

    HUANG B F, WANG Z C, XU Y S.Multi-objective genetic algorithm for hybrid electric vehicle parameter optimization[C]//Proceeds of the 2006 IEEE/RSJ International Conference on Intelligent Robots and System.Beijing:IEEE, 2006:5177-5182.

    [6]

    LIU X D, WU Y P.DUAN J M.Optimal sizing of a series hybrid electric vehicle using a genetic algorithm[C]//Proceedings of the 2007 IEEE International Conference on Automation and Logistics.Jinan:IEEE, 2007:1125-1129.

    [7] 刘旭东.串联式混合动力电动汽车控制策略及其应用技术研究[D].北京:北京工业大学, 2008.LIU Xu-dong.Research on the series hybrid electric vehicle control strategies and its application techniques[D].Beijing:Beijing University of Technology, 2008. (in Chinese)
    [8] 潘伟, 刁华宗, 井元伟.一种改进的实数自适应遗传算法[J].控制与决策, 2006, 21 (7):792-795.PAN Wei, DIAO Hua-zong, JING Yuan-wei.An improved real-value adaptive genetic algorithm[J].Control and Decision, 2006, 21 (7):792-795. (in Chinese)
    [9] 吴志远, 劭惠鹤, 吴新余.一种新的自适应遗传算法及其在多峰值函数优化中的应用[J].控制理论及应用, 1999, 16 (1):127-129.WU Zhi-yuan, SHAO Hui-he, WU Xin-yu.A new adaptive genetic algorithm&its application in multimodel functionoptimization[J].Control Theory and Applications, 1999, 16 (1):127-129. (in Chinese)
    [10] 李青山, 陈平.用改进的遗传算法实现架构恢复[J].软件学报, 2003, 14 (7):1221-1228.LI Qing-shan, CHEN Ping.Implementing architecture recover by using improved genetic algorithm[J].Journal ofSoftware, 2003, 14 (7):1221-1228. (in Chinese)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-02-20
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回