• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

高效寻优的经验遗传算法

杜修力, 韩玲, 姜丽萍

杜修力, 韩玲, 姜丽萍. 高效寻优的经验遗传算法[J]. 北京工业大学学报, 2006, 32(11): 992-995.
引用本文: 杜修力, 韩玲, 姜丽萍. 高效寻优的经验遗传算法[J]. 北京工业大学学报, 2006, 32(11): 992-995.
DU Xiu-li, HAN Ling, JIANG Li-ping. An Efficient Global Optimization Algorithm:Empirical Genetic Algorithm[J]. Journal of Beijing University of Technology, 2006, 32(11): 992-995.
Citation: DU Xiu-li, HAN Ling, JIANG Li-ping. An Efficient Global Optimization Algorithm:Empirical Genetic Algorithm[J]. Journal of Beijing University of Technology, 2006, 32(11): 992-995.

高效寻优的经验遗传算法

基金项目: 

国家自然科学基金资助(50325826、50278006)

北京市自然科学基金资助(8031001)

详细信息
    作者简介:

    杜修力(1961-),男,四川广安人,教授.

  • 中图分类号: TU311.4

An Efficient Global Optimization Algorithm:Empirical Genetic Algorithm

  • 摘要: 为了寻求高效的寻优方法,本文提出经验遗传算法,用神经网络模型经验地预测每代种群个体的适应度,从而减少对问题直接求解的次数,提高遗传算法的计算效率.通过对6个经典测试函数的数值计算分析,结果验证了本文所提的算法的有效性,而且能降低计算量.
    Abstract: It is necessary to obtain corresponcling solutions to evaluating the fitness of all individuals of every generation of the population and to analyze the solutions by using Genetic Algorithm. When the scale of problem is large, the calculation of genetic algorithm will be so enormous that it ean not be used in practice. However, a new method called empirical genetic algorithm is proposed in the paper. It decrease the number to analyze the solution and increase the efficiency of the genetic algorithm, in which the fitness of most individuals of every generation of the population are estimated by the empirical Neural Network. The calculation results from six classical test functions show that the method is efficient.
  • [1] 罗文辉.遗传算法在神经网络优化中的应用[J].控制工程,2003,10(5):401-403.LUO Wen-hui.Application of genetic algorithm to neural network optimization[J].Control Engineering of China,2003,10(5):401-403.(in Chinese)
    [2] 孙全玲,胡平,陆金桂.基于神经网络和遗传算法的优化设计方法[J].计算机应用,2003,23(10):98-99.SUN Quan-ling,HU Ping,LU Jin-gui.Optimizatin design method based on NN and GA.Computer applications[J].2003,23(10):98-99.(in Chinese)
    [3] 王文剑,贾莲凤.用综合法优化前向神经网络结构[J].计算机工程与设计,2001,22(6):92-94.WANG Wen-jian,JIA Lian-feng.Optimal feed-forward neural network architecture using synthesis method[J].Compter Engineering and Design,2001,22(6):92-94.(in Chinese)
    [4] 杨洪明,白培林.基于遗传算法的人工神经网络负荷预报模型[J].湖南电力,2000,20(1):6-8.YANG Hong-ming,BAI Pei-lin.Neural network charge predict model based on the genetic algorithm[J].Electric Power of HUNAN,2000,20(1):6-8.(in Chinese)
    [5]

    COOK D F,RAGSDALE G T,MAJOR R L.Combining a neural network with a genetic algorithm for process parameter optimization[J].Engineering Application of Artificial Intelligence,2000,13:391-396.

    [6]

    DU Xiu-li,ZENG Di.Structural physical parameter identification based on evolutionary-simplex algorithm and structural dynamic respose[J].Earthquake Engineering and Engineering Vibration,2003,2(2):225-236.

计量
  • 文章访问数:  18
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-08-31
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回