• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

不同环境条件下Fe3+对金霉素降解机制的影响

王辉, 姚宏, 田盛, 马友千, 于晓华

王辉, 姚宏, 田盛, 马友千, 于晓华. 不同环境条件下Fe3+对金霉素降解机制的影响[J]. 北京工业大学学报, 2013, 39(6): 954-960.
引用本文: 王辉, 姚宏, 田盛, 马友千, 于晓华. 不同环境条件下Fe3+对金霉素降解机制的影响[J]. 北京工业大学学报, 2013, 39(6): 954-960.
WANG Hui, YAO Hong, TIAN Sheng, MA You-qian, YU Xiao-hua. Effect of Fe3+ on the Degradation Mechanism of Chlortetracycline Under Different Environmental Conditions[J]. Journal of Beijing University of Technology, 2013, 39(6): 954-960.
Citation: WANG Hui, YAO Hong, TIAN Sheng, MA You-qian, YU Xiao-hua. Effect of Fe3+ on the Degradation Mechanism of Chlortetracycline Under Different Environmental Conditions[J]. Journal of Beijing University of Technology, 2013, 39(6): 954-960.

不同环境条件下Fe3+对金霉素降解机制的影响

基金项目: 

国家自然科学基金资助项目(51078023)

北京市自然科学基金资助项目(8122033).

详细信息
    作者简介:

    王辉(1989-),男,博士研究生,主要从事制药废水处理技术方面的研究,E-mail:wanghui.1020@yahoo.com.cn.

  • 中图分类号: X703.1

Effect of Fe3+ on the Degradation Mechanism of Chlortetracycline Under Different Environmental Conditions

  • 摘要: 金霉素(chlortetracycline,CTC)是一种广泛应用于人类和动植物疾病防治的广谱抗生素,作为一类难降解有机物存在于水环境中.通过对Fe3+与CTC的络合反应机制以及不同条件(Fe3+与CTC的摩尔比、温度、pH)下CTC降解规律的研究,探讨了Fe3+的存在对CTC降解规律的影响.结果表明:1 molCTC分子最多络合2 molFe3+,且Fe3+与CTC的结合部位在CTC分子的A环;Fe3+的浓度会对CTC降解产生影响,当Fe3+与CTC的摩尔比为1∶1时,CTC的降解速率最大;CTC的降解速率随着温度和pH的升高而增大;投入与CTC等浓度的Fe3+时,10和20℃条件下CTC的降解速率分别提高了271%和322%(30℃时,Fe3+的效果不是很显著),pH=3、5和7时CTC的降解速率分别提高400%、141%和179%.由于Fe3+大量存在于金霉素制药废水中,通过研究不同环境条件下Fe3+对金霉素降解机制的影响规律,可为实际工程环境条件的确定及制药废水中CTC降解模型的建立提供科学依据.
    Abstract: Chlortetracycline is a kind of broad-spectrum antibiotics which is used for treating human diseases and animal diseases,and as a kind of persistent organic pollutants(POPs) remained in the aquatic environment.The degradation of CTC with the influence of Fe3+ was discussed via complexation reaction mechanism and under different conditions(ratio of n(Fe3+) to n(CTC),temperature and pH).Resultsshow that the CTC-Fe3+ complex is likely formed with the A-ring and that a single unit of CTC can complex with a maximum of two units of Fe3+.The degradation rates are different with different concentrations of Fe3+.When the ratio of n(Fe3+) to n(CTC) reaches 1∶1,the degradation rate attains the maximum value.In the presence of Fe(Ⅲ) with the same concentration to CTC,the degradation rate of CTC is significantly enhanced 271% and 322% at 10 ℃ and 20 ℃,respectively(however,the effect of Fe3+ was not significant at 30 ℃),and by 400%,141% and 179% at pH 3,5 and 7,respectively.Because of the abundant appearance of Fe3+,the results can provide a scientific basis for the determination of actual engineering environment condition and the modeling of CTC's degradation in pharmaceutical wastewater treatment.
  • [1]

    WOLLENBERGER L,HALLING-SORENSEN B,KUSK KO.Acute and chronic toxicity of veterinary antibiotics todaphnia magna[J].Chemosphere,2000,40:723-730.

    [2]

    MARTINEZ J L.Environmental pollution by antibioticsand by antibiotic resistance determinants[J].EnvironPollut,2009,157:2893-2902.

    [3]

    GRASLUND S,BENGTSSON B E.Chemicals andbiological products used in south-east Asian shrimpfarming,and their potential impact on the environment—areview[J].The Science of the Total Environment,2001,280:93-131.

    [4]

    HIRSH R,TERNES T,HABERER K,et al.Occurrenceof antibiotic in the aquatic environment[J].Sci TotalEnviron,1999,225:109-118.

    [5]

    AJIT K S,MICHAEL T,MEYER,et al.A globalperspective on the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics(VAs)in the environment[J].Chemosphere,2006,65(5):725-759.

    [6]

    GRASLUND S,HOLMSTROM K,WAHLSTROM A.Afield survey of chemicals and biological products used inshrimp farming[J].Marine Pollution Bulletin,2003,46(1):81-90.

    [7]

    MITEMA E S,KIKUVI G M,WEGENER H C,et al.Anassessment of antimicrobial consumption in food producinganimals in Kenya[J].J Vet Pharmacol Therap,2001,24:385-390.

    [8] 苏仲毅.环境水样中24种抗生素残留的同时分析方法及其应用研究[D].厦门:厦门大学海环学院,2008.SU Zhong-yi.Simutaneous detection method andapplication research for 24 antibiotics residue in aquaticenvironment[D].Xiamen:College of Ocean&EarthScience,Xiamen University,2008.(in Chinese)
    [9]

    DE LIGUORO M,CIBIN V,CAPOLONGO F,et al.Useof oxytetracycline and tylosin in intensive calf farming:evaluation of transfer to manure and soil[J].Chemosphere,2003,52:203-212.

    [10]

    CAMPAGNOLO E R,JOHNSON K R,KARPATI A,et al.Antimicrobial residues in animal waste and waterresources proximal to large-scale swine and poultryfeeding operations[J].Science of the Total Environment,2002,299:89-95.

    [11] 张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005,11(6):822-829.ZHANG Shu-qing,ZHANG Fu-dao,LIU Xiu-mei,et al.Determination and analysis on main harmful compositionin excrement of scale livestock and poultry feedlots[J].Plant Nutrition and Fertilizer Science,2005,11(6):822-829.(in Chinese)
    [12]

    HAMSCHER G,SCZENSNY S,HOPER H,et al.Determination of persistent tetracycline residues in soilfertilized with liquid manure by high-performance liquidchromatography with electrospray ionization tandem massspectrometry[J].Analytical Chemistry,2002,74:1509-1518.

    [13] 张慧敏,章明奎,顾国平.浙北地区畜禽粪便和农田土壤中四环素类抗生素残留[J].生态与农村环境学报,2008,24(3):69-73.ZHANG Hui-min,ZHANG Ming-kui,GU Guo-ping.Residues of tetracyclines in livestock and poultry manuresand agricultural soils from north Zhejiang province[J].Journal of Ecology and Rural Environment,2008,24(3):69-73.(in Chinese)
    [14] 唐礼庆,何成达,罗亚红,等.四环素类抗生素生产废水处理技术进展[J].环境科学与管理,2006,31(7):99-102.TANG Li-qing,HE Cheng-da,LUO Ya-hong,et al.Progresses of treatment technologies for pharmaceuticalwastewater containing tetracycline antibiotics[J].Environmental Science and Management,2006,31(7):99-102.(in Chinese)
    [15]

    CHEN W R,HUANG C H.Transformation oftetracyclines mediated by Mn(Ⅱ)and Cu(Ⅱ)ions inthe presence of oxygen[J].Environ Sci Technol,2008,43:401-407.

    [16]

    SOEBORG T,INGERSLEV F,HALLING-SORENSENB.Chemical stability of chlortetracycline andchlortetracycline degradation products and epimers in soilinterstitial water[J].Chemosphere,2004,57:1515-1524.

    [17]

    JEZOWSKA-BOJCZUK M,LAMBS L,KOZLOWSKI H,et al.Metal ion-tetracycline interactions in biologicalfluids.10.Structural investigations on copper(Ⅱ)complexes of tetracycline,oxytetracycline,chlortetracycline,4-(dedimethylamino)tetracycline,and6-desoxy-6-demethyltetracycline and discussion of theirbinding modes[J].Inorg Chem,1993,32:428-437.

    [18]

    TONGAREE S,FLANAGAN D R,POUST R I.Theeffects of pH and mixed solvent systems on the solubilityof oxytetracycline[J].Pharmaceutical Development andTechnology,1999,4(4):571-580.

    [19] 李华.水体中四环素类抗生素的光化学行为研究[D].武汉:华中科技大学环境科学与工程学院,2011.LI Hua.Photochemical behavior of tetracyclines inaquatic system[D].Wuhan:School of EnvironmentalScience&Engineering,Huazhong University of Scienceand Technology,2011.(in Chinese)
    [20]

    LOFTIN K A,ADAMS C D,MEYER M T,et al.Effectsof ionic strength,temperature,and pH on degradation ofselected antibiotics[J].Journal of EnvironmentalQuality,2008,37:378-386.

    [21]

    JIAO S,ZHENG S,YIN D,et al.Aqueous photolysis oftetracycline and toxicity of photolytic products toluminescent bacteria[J].Chemosphere,2008,73:377-382.

计量
  • 文章访问数:  33
  • HTML全文浏览量:  13
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-14
  • 网络出版日期:  2022-11-02

目录

    /

    返回文章
    返回