串联机器人机构分析和综合同步方法的应用

    Application of Simultaneous Mechanism Analysis and Synthesis in Serial Robots

    • 摘要: 为揭示机器人机构综合性能与机构类型和尺寸之间的映射规律,基于机器人机构单一性能指标的相关性和多样性,引入统计学原理,依据线性降维与非线性降维原则,应用主成分分析法(principal component analysis,PCA)和核主成分分析法(kernel principal component analysis,KPCA),对典型串联机器人——不同构型和不同尺度的平面串联机械臂进行综合性能评价,从而选择综合性能最优的机构构型和尺度.计算结果表明:KPCA方法较PCA方法有更好的降维效果,更能有效地处理多个单一性指标间的非线性关系,提供更多的综合性能评价信息,可为建立机器人机构综合性能与其机构类型和尺寸之间的数值计算关系,并进行机构构型和尺度同步综合提供科学的参考依据.

       

      Abstract: To reveal the regularities among comprehensive performance,configuration and scales for simultaneous mechanism analysis and synthesis,due to the correlation and diversity of the single performance indexes of robot mechanism,combined with statistical principles,based on linear dimension reduction and nonlinear dimension reduction principle,principal component analysis(PCA) and kernel principal component analysis(KPCA) can be introduced into comprehensive performance evaluation for typical serial robots-plane series manipulator with different configurations and scales, then the mechanism's configuration and scales with best performance can be selected. Reults show that KPCA method has more effective reduction effects,and can reveal the nonlinear relationship among different single performance indexes to provide more comprehensive performance evaluation information,which can reveal the numerical calculation relationships among comprehensive performance, configuration and scales,and provide a scientific reference for simultaneous mechanism analysis and synthesis.

       

    /

    返回文章
    返回