基于神经网络的控制图异常模式识别研究

    Research on Abnormal Pattern Recognition for Control Chart Based on Neural Network

    • 摘要: 为了对控制图异常进行有效识别,以提高质量管理的自动化程度,促进企业信息化建设,通过将Monte Carlo方法产生的仿真数据进行线性变换编码,以提高样本的模式特征,然后在不同训练样本情况下,分别应用自适应修改学习率BP网络和概率神经网络进行训练识别,通过对结果的分析提出了实际生产中应用的策略.

       

      Abstract: In order to recognize the abnormal pattern of control chart to enhance the automation level of quality management and promote E-management of manufacturing enterprise,in this paper the quality data generated by Monte Carlo simulation is coded through lionear transformation to improve the character of the patterns,and then the two kinds of neural networks are applied to recognize the control chart patterns.Through analyzing the test result,the application strategy of control chart recognition is proposed.

       

    /

    返回文章
    返回