与特殊性质\mathscrP对偶的空间及相关结论

    Spaces Which are Dually Special Property \mathscrP and Related Conclusions

    • 摘要: X是拓扑空间,令\mathscrP=AAX的具有性质\mathscrP的子集,如果对于X的任意邻域指派ϕ,都存在A∈P,使得X=∪ϕ(x)∶xA,则称X是与性质\mathscrP对偶的空间.对于给定的特殊性质\mathscrP,主要讨论了与性质\mathscrP对偶的空间的一些基本性质,并给出了X是与性质\mathscrP对偶空间的充分必要条件.这些结论可应用于多种空间类,作为其中的一推论,得到每个正则弱θ-加细(离散对偶)-散布空间是离散对偶空间.另外,还讨论了aD-空间的相关结论.

       

      Abstract: Let X be a space,and \mathscrP=AA is a subset of X, and has property >\mathscrP.A space X is dual the property \mathscrP if for any neighborhood assignment φ for X,there is a subset AX,A∈\mathscrP,such that X=∪φ(x)∶x∈A.In this note,we mainly discuss properties of spaces which are dually special \mathscrP,and also give a necessary and sufficient condition for spaces which are dually special \mathscrP.These conclusions can be held for many spaces.As a corollary,we have that if X is a regular weak θ-refinable(dually discrete)-scattered space,then X is dually discrete.We also get some conclusions conserning aD- spaces.

       

    /

    返回文章
    返回