一种亚像素精度的边缘检测方法
A Sub-pixel Edge Detection Algorithm
-
摘要: 提出了一种基于贝塞尔边缘模型的亚像素边缘检测算法.该算法首先在原有的贝塞尔点扩散函数中引入修正参数t,并与理想边缘模型卷积,获得可修正的贝塞尔边缘灰度模型;然后,利用图像边缘的信息对该模型进行最小二乘拟合,在拟合过程中,通过修正参数t对边缘模型进行修正,最终获得精确的边缘模型,同时考虑数字采样等因素对灰度分布的影响,得到图像边缘的亚像素位置.实验中测得边缘亚像素位置的平均误差为一个像素的3%,其中误差方差为0.0005.结果表明:本算法基本满足图像测量的稳定可靠、精度高等要求,并且对图像噪声有较强的鲁棒性.Abstract: A sub-pixel edge detection algorithm based on Bessel edge model is presented.Firstly,the algorithm import a modifiable parameter to the Bessel point spread function,and convolve with step edge model to obtain the Bessel edge model.Then Least-square curve fitting method is used to estimate the model by making use of the image edge data,simultaneously considering the effect of digitization to curve fitting.Finally,the sub-pixel location of image edge is obtained.Experimental results indicate that the average error of sub-pixel location is 3% of a pixel,and the variance of error is 0.000 5.It can satisfy the system requirements of non-contact,higher precision and stabilization,as well as strong robustness to the image noise.