基于蚁群算法的贝叶斯网结构学习

    Learning Bayesian Network Structure Based on Ant Colony Optimization Algorithms

    • 摘要: 针对具有丢失数据的贝叶斯网结构学习问题,提出了一种将数据的完备化与结构的蚁群优化相结合的学习方法.随机初始化未观察到的数据,得到完整的数据集,并利用蚁群算法学习得到初始网络结构;然后进行迭代学习,在每次迭代中根据当前最好的贝叶斯网结构,利用EM估计和随机的采样插入对数据进行完备化,在完备数据下,利用改进的蚁群优化过程使结构不断进化,直到获得全局最优解.实验结果表明,该方法能有效地从不完备数据中学习贝叶斯网结构且与新近的MS-EM、EGA、BN-GS方法相比,具有更高的学习精度.

       

      Abstract: To learn Bayesian Network (BN) structure from incomplete data,this paper proposed an approach combined with both processes of data completing and Ant Colony Optimization (ACO).First,unobserved data are randomly initialized,thus a complete data is got.Based on such a data set,an initialization BN is learned by Ant Colony Algorithm.Second,in light of the current best structure of evolutionary process,Expectation Maximization (EM)estimating and randomly sampling are performed to complete the data.Third,on the basis of the new complete data set,the BN structure is evolved by an improved ACO process.Finally,the second and third steps are iterated until the global best structure is obtained.Experimental results show the approach can effectively learn BN structure form incomplete data,and is more accurate than MS-EM、EGA、BN-GS algorithms.

       

    /

    返回文章
    返回