三次单项布尔函数的二阶非线性度下界

    The Nonlinearity Lower Bounds on the Second Order of Cubic Monomial Boolean Functions

    • 摘要: 本文研究了形如fμ(x)=Tr(μxd)的n元单项布尔函数,其中d=2i+2j+1,μGF(2n)*,i,j均为正整数,且nij.已有结论表明:当n>2i时,fμ(x)具有良好的二阶非线性度下界.在此基础上本文研究了n≤2ifμ(x)所有导数的非线性度下界,并给出n≤2ifμ(x)的二阶非线性度下界.结果表明n≤2ifμ(x)的二阶非线性度下界比n>2ifμ(x)的二阶非线性度下界更紧.因此,fμ(x)无论在n>2i还是n≤2i时都可以抵抗二次函数逼近和仿射逼近攻击.

       

      Abstract: This paper investigates cubic monomial Boolean functions fμ(x)=Tr(μxd) with n variables, where d=2i+2j+1,μGF(2n)*, and nij. The known results show that the Boolean functions fμ(x) has good lower bounds on the second nonlinearity for n>2i. This paper firstly studies all lower bounds on the nonlinearity of the derivatives of fμ(x), then the lower bounds on the second order nonlinearity of fμ(x) for n≤2i are given. The results show that the lower bounds on the second order nonlinearity of fμ(x) for n≤2i are tighter than that of fμ(x) for n>2i. Therefore, whether n>2i or n≤2i, the Boolean functions fμ(x) can resist quadratic or linear approximation attacks.

       

    /

    返回文章
    返回