Logit Model Application in Expressway Traffic Condition Prediction
-
摘要: 在分析相邻检测器截面间交通流的高度非线性和时空耦合性特点的基础上,结合上海市某一快速路段环型线圈检测器数据和浮动车GPS数据,采用数据挖掘技术提取检测器截面间的交通流时空数据.运用多项式分对数模型对所提取的时空数据进行统计分类分析,依托特征参数建立交通状态多项K-Logit指数模型.结合快速路匝道控制措施,采用VISSIM COM与VC++6.0为仿真平台,对实验数据进行仿真,结果表明:分对数模型对交通状态的预测精度能达到93.65%,行程时间平均缩减了17.1%,车辆延误降低了11.9%,行车速度提高了14.6%.
-
关键词:
- 多项K-Logit指数模型 /
- 多源数据融合 /
- 交通状态预测
Abstract: Based on the analysis result of the high no-linear and time-spatial coupling of the traffic flow between the detectors segment, data mining technology is used to extract the time-spatial data of traffic flow with the detector data and probe vehicle GPS data of the expressway in Shanghai.The K-deformed multinomial logit model is put forward to predict the traffic condition, and the characteristic parameters are used to setup the K-deformed multinomial logit model for the traffic condition prediction.The data validation of the expressway in Shanghai is simulated on the platform of VISSIM COM and Microsoft Visual C+ +6.0, and the results show that the precision of traffic condition prediction using the K-deformed multinomial logit model is 93. 46%, average travel time and vehicle delay reduce by 17.1% and 11.9% respectively, average vehicle speed improves by 14.6%. -
-
期刊类型引用(1)
1. 李鹏,黄鹏,凌智琛,邓甘霖. 无监督深度学习单目视觉里程计研究. 导航定位与授时. 2023(02): 74-81 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 1