基于自适应权值稀疏典型相关分析的人脸表情识别算法

    Facial Expression Recognition Based on Adaptive Weights Sparse Canonical Correlation Analysis

    • 摘要: 为解决当变量个数较多时,典型相关分析方法不能给出一个稳定模型的问题,提出了一种基于自适应权值的稀疏典型相关分析的人脸表情识别方法.稀疏典型相关分析通过附加一个系数收敛的约束,使基向量中的某些系数收敛为0,因此,就能去掉一些对表情识别没有用处的变量.同时,由于通常的稀疏典型相关分析求解中,稀疏权值的选择是固定值,会产生一些误差,故利用自适应权值的方法来降低在求解稀疏典型向量时产生的误差.在Jaffe和Cohn-Kanade人脸表情数据库上的实验结果,进一步验证了该方法的正确性和有效性.

       

      Abstract: To solve the problem that when the dimension of variables was high,canonical correlation analysis couldn't give a stable model of the problem,a facial expression recognition method based on adaptive weights sparse canonical correlation analysis was proposed.Sparse canonical correlation analysis attached a constraint of coefficient convergence,some of the factors in the basis vectors converged to zero,therefore it would be able to remove some useless variables for the facial expression recognition.In the process of solving sparse canonical correlation analysis,sparse weight was a fixed value,therefore the method of adaptive weights was used to reduce the error when solving the sparse canonical vector.Resultson Jaffe and Cohn-Kanade tests of facial expression database show that the proposed method is correctness and effectiveness.

       

    /

    返回文章
    返回