Analysis of Gene Sensitivity for Tumor Informative Genes Selection Based on SVM
-
摘要: 提出基于支持向量机的灵敏度分析方法选取结肠癌特征基因.用支持向量机分析基因对分类决策函数的灵敏度,递归去除灵敏度较低的若干基因,得到一组候选特征基因子集;以支持向量机为分类工具,检验候选特征基因子集对样本分类的贡献,选取具有最佳分类能力的候选特征基因子集作为结肠癌特征基因子集.通过实验比较,该特征基因子集的分类能力优于文献给出的其他特征基因子集,表明了该方法的可行性和有效性.Abstract: In this paper we proposed an approach for tumor informative genes selection by analysis of gene sen- sitivity based on SVM.We analyzed the gene expression profiles of colon and recursively eliminated the genes which have lower sensitivity to SVM,then a set of candidate nested feature subsets were generated.Support Vector Machines were employed to classify the samples using these candidate feature subsets,and the feature subset with a minimum error was chosen as a set of colon informative genes.The results show that this feature subset contains more tumor classification information than other feature subsets identified in the literatures. The method proposed in this paper is feasible and effective.
-
Keywords:
- feature selection /
- support vector machine /
- gene expression profile /
- sensitivity
-
-
[1] RAMASWAMY S,GOLUB T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7): 1932-1941.
[2] LANDER E S,WEINBERG R A.GENOMICS:Journey to the center of biology[J].Scince,2000,287:1777-1782.
[3] LANDER E S.Array of hope[J].Nature Genetics,1999,21(supp):3-4.
[4] 李泽,包雷,黄英武,等.基于基因表达谱的肿瘤分型和特征基因的选取[J].生物物理学报,2002,18(4):413-417.LI Ze,BAO Lei,HUANG Ying-wu,et al.Cancer subtype discovery and informative gene identification with gene expression profiles[J].Acta Biophysica Sinica,2002,18(4):413-417.(in Chinese) [5] GOLUB R R,SI,ONIM D K,TAMAYO P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,289:531-537.
[6] KHAN J,WEI J S,RINGNER M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural net works[J].Nature Medicine,2001,7(6):637-679.
[7] ALON U,BARKAI N,NOTTERMAN D A,et al.Broad patterns of gene expression revealed by clustering analysis of tu- mor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci Usa,1999,96:6745-6750.
[8] ZHANG H,YU C Y,SINGER B,et al.Recursive partioning for tumor classification with gene expression microarray data [J].Proc Natl Acad Sci Usa,2001,98:6730-6735.
[9] 李霞,饶绍奇,张田文。等.应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法[J].中国科学C辑生命科学,2004,34(2):195-202.LI Xia,RAO Shao-qi,ZHANG Tian-wen,et al.A ensemble decision approach to hunting for disease genes using microarray expression profiling[J].Science in China Ser C Life Sciences,2004,34(2):195-202.(in Chinese) [10] GUYON I,WESTON J,BARNHILL S,et al.Gene selection for cancer classification using support vector machines[J]. Machine Learning,2000,46(13):389-242.
[11] VAPNIK V N.Statistical leaning theory[M].Newv York:Wiley Interscience,1998.
[12] 李颖新,阮晓刚.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801.LI Ying-xin,RUAN Xiao-gang.Feature selection for cancer classification based on support vector machine[J].Journal of Computer Research and Development,2005,42(10):1796-1801.(in Chinese)
计量
- 文章访问数: 11
- HTML全文浏览量: 0
- PDF下载量: 7