• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

基于SVM的灵敏度分析方法选取肿瘤特征基因

刘全金, 李颖新, 阮晓钢

刘全金, 李颖新, 阮晓钢. 基于SVM的灵敏度分析方法选取肿瘤特征基因[J]. 北京工业大学学报, 2007, 33(9): 954-958.
引用本文: 刘全金, 李颖新, 阮晓钢. 基于SVM的灵敏度分析方法选取肿瘤特征基因[J]. 北京工业大学学报, 2007, 33(9): 954-958.
LIU Quan-jin, LI Ying-xin, RUAN Xiao-gang. Analysis of Gene Sensitivity for Tumor Informative Genes Selection Based on SVM[J]. Journal of Beijing University of Technology, 2007, 33(9): 954-958.
Citation: LIU Quan-jin, LI Ying-xin, RUAN Xiao-gang. Analysis of Gene Sensitivity for Tumor Informative Genes Selection Based on SVM[J]. Journal of Beijing University of Technology, 2007, 33(9): 954-958.

基于SVM的灵敏度分析方法选取肿瘤特征基因

基金项目: 

国家自然科学基金重点资助项目(60234020)

安徽省教育厅科研项目(KJ2007B001).

详细信息
    作者简介:

    刘全金(1971-),男,安微寿县人,讲师.

  • 中图分类号: TP181;Q16

Analysis of Gene Sensitivity for Tumor Informative Genes Selection Based on SVM

  • 摘要: 提出基于支持向量机的灵敏度分析方法选取结肠癌特征基因.用支持向量机分析基因对分类决策函数的灵敏度,递归去除灵敏度较低的若干基因,得到一组候选特征基因子集;以支持向量机为分类工具,检验候选特征基因子集对样本分类的贡献,选取具有最佳分类能力的候选特征基因子集作为结肠癌特征基因子集.通过实验比较,该特征基因子集的分类能力优于文献给出的其他特征基因子集,表明了该方法的可行性和有效性.
    Abstract: In this paper we proposed an approach for tumor informative genes selection by analysis of gene sen- sitivity based on SVM.We analyzed the gene expression profiles of colon and recursively eliminated the genes which have lower sensitivity to SVM,then a set of candidate nested feature subsets were generated.Support Vector Machines were employed to classify the samples using these candidate feature subsets,and the feature subset with a minimum error was chosen as a set of colon informative genes.The results show that this feature subset contains more tumor classification information than other feature subsets identified in the literatures. The method proposed in this paper is feasible and effective.
  • [1]

    RAMASWAMY S,GOLUB T R.DNA microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7): 1932-1941.

    [2]

    LANDER E S,WEINBERG R A.GENOMICS:Journey to the center of biology[J].Scince,2000,287:1777-1782.

    [3]

    LANDER E S.Array of hope[J].Nature Genetics,1999,21(supp):3-4.

    [4] 李泽,包雷,黄英武,等.基于基因表达谱的肿瘤分型和特征基因的选取[J].生物物理学报,2002,18(4):413-417.LI Ze,BAO Lei,HUANG Ying-wu,et al.Cancer subtype discovery and informative gene identification with gene expression profiles[J].Acta Biophysica Sinica,2002,18(4):413-417.(in Chinese)
    [5]

    GOLUB R R,SI,ONIM D K,TAMAYO P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,289:531-537.

    [6]

    KHAN J,WEI J S,RINGNER M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural net works[J].Nature Medicine,2001,7(6):637-679.

    [7]

    ALON U,BARKAI N,NOTTERMAN D A,et al.Broad patterns of gene expression revealed by clustering analysis of tu- mor and normal colon tissues probed by oligonucleotide arrays[J].Proc Natl Acad Sci Usa,1999,96:6745-6750.

    [8]

    ZHANG H,YU C Y,SINGER B,et al.Recursive partioning for tumor classification with gene expression microarray data [J].Proc Natl Acad Sci Usa,2001,98:6730-6735.

    [9] 李霞,饶绍奇,张田文。等.应用DNA芯片数据挖掘复杂疾病相关基因的集成决策方法[J].中国科学C辑生命科学,2004,34(2):195-202.LI Xia,RAO Shao-qi,ZHANG Tian-wen,et al.A ensemble decision approach to hunting for disease genes using microarray expression profiling[J].Science in China Ser C Life Sciences,2004,34(2):195-202.(in Chinese)
    [10]

    GUYON I,WESTON J,BARNHILL S,et al.Gene selection for cancer classification using support vector machines[J]. Machine Learning,2000,46(13):389-242.

    [11]

    VAPNIK V N.Statistical leaning theory[M].Newv York:Wiley Interscience,1998.

    [12] 李颖新,阮晓刚.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801.LI Ying-xin,RUAN Xiao-gang.Feature selection for cancer classification based on support vector machine[J].Journal of Computer Research and Development,2005,42(10):1796-1801.(in Chinese)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-01
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回