• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

具有放牧率及扩散的概周期竞争模型

王长有, 王术, 李林锐

王长有, 王术, 李林锐. 具有放牧率及扩散的概周期竞争模型[J]. 北京工业大学学报, 2012, 38(11): 1749-1755,1760.
引用本文: 王长有, 王术, 李林锐. 具有放牧率及扩散的概周期竞争模型[J]. 北京工业大学学报, 2012, 38(11): 1749-1755,1760.
WANG Chang-you, WANG Shu, LI Lin-rui. Almost Periodic Competition Models With Grazing Rates and Diffusions[J]. Journal of Beijing University of Technology, 2012, 38(11): 1749-1755,1760.
Citation: WANG Chang-you, WANG Shu, LI Lin-rui. Almost Periodic Competition Models With Grazing Rates and Diffusions[J]. Journal of Beijing University of Technology, 2012, 38(11): 1749-1755,1760.

具有放牧率及扩散的概周期竞争模型

基金项目: 

国家自然科学基金资助项目(11101298)

重庆市教育委员会科学技术研究项目(KJ110501).

详细信息
    作者简介:

    王长有(1968—),男,教授,主要从事微分方程理论及应用方面的研究,E-mail:wangcy@cqupt.edu.cn.

  • 中图分类号: O175.14

Almost Periodic Competition Models With Grazing Rates and Diffusions

  • 摘要: 研究了一类具有放牧率及扩散的3种群概周期竞争模型,利用上、下解方法,Schauder不动点定理以及Lyapunov稳定性理论,得到了确保该模型空间齐次概周期解的存在性及稳定性的充分条件,推广了已有的相应结果.
    Abstract: Almost periodic solution of a three-species competition system with grazing rates and diffusions were investigated by using the method of upper and lower solutions,the Schauder fixed point theorem as well as Lyapunov stability theory.Sufficient conditions guaranteeing the existence and stability of the strictly positive space homogenous almost periodic solution of the system were obtained,and some known results were improved.
  • [1] 姜东平.具有放牧率的某些周期生态模型[J].生物数学学报,1990,5(1):80-89.JIANG Dong-ping.Some periodic biological models with grazing rates[J].Journal of Biomathematics,1990,5(1):80-89.(in Chinese)
    [2] 林庆聪.具有放牧率的某些概周期生态模型[J].生物数学学报,1999,14(3):257-263.LIN Qing-cong.Some almost periodic biological models with grazing rates[J].Journal of Biomathematics,1999,14(3):257-263.(in Chinese)
    [3] 陈凤德,陈晓星.具有放牧率的n阶Lotka-Volterra概周期竞争系统[J].生物数学学报,2003,18(4):411-416.CHEN Feng-de,CHEN Xiao-xing.The n-competing Volterra-Lotka almost periodic systems with grazing rates[J].Journal of Biomathematics,2003,18(4):411-416.(in Chinese)
    [4]

    PAO C V,WANG Yi-ming.Numerical solutions of a three-competition Lotka-Volterra system[J].Applied Mathematics and Computation,2008,204(1):423-440.

    [5]

    LIU Yong-qing,XIE Seng-li,XIE Zhi-dong.Existence and stability for periodic solution of competition reaction-diffusion models with grazing rates in population dynamics[J].Journal of Systems Science and Systems Engineering,1996,10(2):402-410.

    [6]

    WANG Chang-you.Periodic solution of prey predator model with diffusion and distributed delay effects[J].Journal of Chongqing University of Posts and Telecommunication:Natural Science Edition,2006,18(3):409-412.

    [7]

    WANG Chang-you.Existence and stability of periodic solutions for parabolic systems with time delays[J].Journal of Mathematical Analysis and Application,2008,339(2):1354-1361.

    [8] 王长有,胡晓红.具时滞的反应扩散的有解和周期解的存在性和唯一性[J].重庆邮电大学学报:自然科学版,2005,17(5):644-646.WANG Chang-you,HU Xiao-hong.Existence and uniqueness of bounded solution and periodic solution of reaction-diffusion equation with time delay[J].Journal of Chongqing University of Posts and Telecommunication:Natural Science Edition,2005,17(5):644-646.(in Chinese)
    [9]

    LI Yong-kun,KUANG Yong.Periodic solutions of periodic delay Lotka-Volterra equations and systems[J].Journal of Mathematical Analysis and Application,2001,255(1):260-280.

    [10] 叶其孝,李正元.反应扩散方程引论[M].北京:科学出版社,1999:205-206.
    [11] 张恭庆,林源渠.泛函分析讲义:上册[M].北京:北京大学出版社,2000:48-50.
    [12] 何崇佑.概周期微分方程[M].北京:高等教育出版社,1992:9-12,93-95.
计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-21
  • 网络出版日期:  2022-12-02

目录

    /

    返回文章
    返回