应用模糊逻辑的车道线检测方法

    Lane Detection Using Fuzzy Logic

    • 摘要: 为了实现受大片阴影干扰或强光照等条件下的车道线边缘增强与车道线检测,提出了一种应用模糊逻辑的图像处理方法检测车道线,通过最大信息熵求取直方图的谷底作为隶属度函数的参数值,利用模糊逻辑增强了车道线像素与柏油路像素之间的对比度.在车道线检测过程中,对预处理后的图像利用HT检测直道,利用3次曲线方程拟合弯道.为了节省数据处理时间,根据上一帧的车道线参数,利用Kalman滤波器动态建立感兴趣区域,并且预测当前帧的车道线拟合参数,实现道路的实时检测.对比分析表明,该算法提高了受大片阴影干扰或强光照等条件下的车道线边缘像素和柏油路像素之间的对比度,强化了车道线边缘信息.车道线检测结果表明,经过模糊逻辑处理能准确提取大片阴影干扰或强光照等条件下的车道线参数,稳定检测多种光照条件下的车道线.

       

      Abstract: In order to implement the edge enhancement and lane line detection of the shadowy and strong illumination et al,an image processing method based on fuzzy logic is proposed.The maximum information entropy principle is introduced to obtain the parameter of the membership function through the histogram.The fuzzy logic method is used to enhance the contrast between lane line pixels and road pixels.During the lane detection,the HT (Hough transform) is employed to implement the lane straight line detection and the 3rd order curve model is used to curve line fitting after image preprocessing using fuzzy logic.In order to reduce computational time,the Kalman filter is used to establish the dynamic ROI (region of interest) and predict the lane line parameters for lane line fitting according to the lane parameters of former image for real-time detection.By comparison,it indicates that the method can intensify lane lines information effectively and enhance the contrast between the lane line pixels and road pixels.Experiments results show that lane line detection using fuzzy logic can estimate the lane line parameters accurately and detect the lane lines stably under different illumination conditions.

       

    /

    返回文章
    返回