• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

基于性能协调的溶解氧复合控制方法

张伟, 乔俊飞, 韩红桂

张伟, 乔俊飞, 韩红桂. 基于性能协调的溶解氧复合控制方法[J]. 北京工业大学学报, 2014, 40(9): 1302-1307.
引用本文: 张伟, 乔俊飞, 韩红桂. 基于性能协调的溶解氧复合控制方法[J]. 北京工业大学学报, 2014, 40(9): 1302-1307.
ZHANG Wei, QIAO Jun-fei, HAN Hong-gui. Composite Control of Dissolved Oxygen Concentration Based on Performance Coordination[J]. Journal of Beijing University of Technology, 2014, 40(9): 1302-1307.
Citation: ZHANG Wei, QIAO Jun-fei, HAN Hong-gui. Composite Control of Dissolved Oxygen Concentration Based on Performance Coordination[J]. Journal of Beijing University of Technology, 2014, 40(9): 1302-1307.

基于性能协调的溶解氧复合控制方法

基金项目: 

国家自然科学基金资助项目 (61034008)

北京市自然科学基金资助项目 (4122006)

详细信息
    作者简介:

    张伟 (1978-), 女, 博士研究生, 从事污水处理系统智能控制与优化方面的研究;E-mail:zwei1563@126.com

    通讯作者:

    乔俊飞 (1968-),男, 教授, 博士生导师, 从事智能控制、神经网络设计方面的研究, E-mail:junfeiq@bjut.edu.cn

  • 中图分类号: TP273

Composite Control of Dissolved Oxygen Concentration Based on Performance Coordination

  • 摘要: 针对常规比例积分微分 (proportion-integral-derivative, PID) 控制存在精度不高, 在线自适应差的缺点, 提出了一种在线PID-TS模糊神经网络复合控制方法.该方法利用TS模糊神经网络的自学习能力提高溶解氧的控制精度, 并通过构造的性能协调因子在线调整两者权重.将提出的控制方法应用于国际基准仿真平台.结果表明:所提方法能有效控制污水中的溶解氧参数, 与常规PID和BP (back-propagation) 神经网络控制器相比, 该方法具有更优的动态性能.
    Abstract: Because the conventional proportion-integral-derivative (PID) algorithm has the shortcomings of low accuracy and poor adaptability, a composite method, which includes the TS fuzzy neural network (TS-FNN) and PID controller, is proposed. This control strategy can improve the accuracy of dissolved oxygen (DO) concentration by the self-learning ability of TS-FNN. Meanwhile, the parameters of the controller can be adjusted on-line by constructing performance coordination factor. Then, this method is tested based on the international benchmark simulation platform.Resultsshow that the proposed method can achieve better dynamic performance, compared with the conventional back-propagation (BP) controller and PID controller.
  • [1]

    AYESA E, DE L S, GRAU P, et al.Supervisory control strategies for the new WWTP of Galindo-Bilbao:the long run from the conceptual design to the full-scale experimental validation[J].Water Science and Technology, 2006, 53 (4/5) :193-201.

    [2]

    CARLSSON B, REHNSTROM A.Control of an activated sludge process with nitrogen removal—a benchmark study[J].Water Science and Technology, 2002, 45 (4/5) :135-142.

    [3]

    SILVA G J, DATTA A, BHATTACHARYYA S P.New results on the synthesis of PID controls[J].IEEE Transactions on Automatic Control, 2002, 47 (2) :241-252.

    [4] 王小艺, 李万东, 刘载文, 等.一种模糊PID-Smith污水处理的控制方法[J].计算机应用化学, 2010, 27 (6) :801-803.WANG Xiao-yi, LI Wan-dong, LIU Zai-wen, et al.A control method of dissolved oxygen in sewage treatment based on fuzz-y PID-smith[J].Computers and Applied Chemistry, 2010, 27 (6) :801-803. (in Chinese)
    [5]

    LIU H, YOO C K.Performance assessment of cascade controllers for nitrate control in a wastewater treatment process[J].Korean Journal of Chemical Engineering, 2012, 28 (3) :667-673.

    [6] 韩红桂, 甄博然, 乔俊飞.动态结构优化神经网络及其在溶解氧控制中的应用[J].信息与控制, 2010 (3) :354-360.HAN Hong-gui, ZHEN Bo-ran, QIAO Jun-fei.Dynamic structure optimization neural network and its applications to dissolved oxygenic (DO) control[J].Information and Control, 2010 (3) :354-360. (in Chinese)
    [7] 胡玉玲, 乔俊飞.变参数活性污泥系统溶解氧的模糊神经网络控制[J].电工技术学报, 2004, 19 (3) :36-40.HU Yu-ling, QIAO Jun-fei.Fuzzy neural network control of DO in activated sludge system based on uncertain parameter[J].Transactions of China Electrotechnical Society, 2004, 19 (3) :36-40. (in Chinese)
    [8] 史雄伟, 陈启丽, 张以骞, 等.基于神经元自适应PID的污水处理溶解氧控制系统[J].计算机测量与控制, 2010, 18 (11) :2527-2529, 2532.SHI Xiong-wei, CHEN Qi-li, ZHANG Yi-qian, et al.Dissolved oxygen control system in wastewater treatment based on neuron self-adaptive PID[J].Computer Measurement&Control, 2010, 18 (11) :2527-2529, 2532. (in Chinese)
    [9] 刘瑞兰, 苏宏业, 褚健.模糊神经网络的混合学习算法及其软测量建模[J].系统仿真学报, 2005 (12) :2878-2881.LIU Rui-lan, SU Hong-ye, CHU Jian.Fuzzy neural network based on hybrid learning algorithm and its application to soft sensor[J].Journal of System Simulation, 2005 (12) :2878-2881. (in Chinese)
    [10]

    ALEX J, BETEAU J F, COPP J B, et al.The COST simulation benchmark description and simulator manual[M].Luxembourg:Office for Publications of the European Community, 2002.

计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-24
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回