• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

两相多孔介质弹塑性动力反应计算分析的显式有限元方法

李亮, 杜修力, 赵成刚, 李立云

李亮, 杜修力, 赵成刚, 李立云. 两相多孔介质弹塑性动力反应计算分析的显式有限元方法[J]. 北京工业大学学报, 2006, 32(9): 784-790.
引用本文: 李亮, 杜修力, 赵成刚, 李立云. 两相多孔介质弹塑性动力反应计算分析的显式有限元方法[J]. 北京工业大学学报, 2006, 32(9): 784-790.
LI Liang, DU Xiu-li, ZHAO Cheng-gang, LI Li-yun. Explicit Finite Element Method for Calculation and Analysis of the Elasto-plastic Dynamic Response of Fluid-saturated Porous Media[J]. Journal of Beijing University of Technology, 2006, 32(9): 784-790.
Citation: LI Liang, DU Xiu-li, ZHAO Cheng-gang, LI Li-yun. Explicit Finite Element Method for Calculation and Analysis of the Elasto-plastic Dynamic Response of Fluid-saturated Porous Media[J]. Journal of Beijing University of Technology, 2006, 32(9): 784-790.

两相多孔介质弹塑性动力反应计算分析的显式有限元方法

基金项目: 

国家自然科学基金资助项目(50325826、50508002).

详细信息
    作者简介:

    李亮(1975-),男,山西太谷人,博士后.

  • 中图分类号: TU435

Explicit Finite Element Method for Calculation and Analysis of the Elasto-plastic Dynamic Response of Fluid-saturated Porous Media

  • 摘要: 应用连续介质力学的基本原理,针对流体饱和两相多孔介质的特点,建立起增量形式的两相多孔介质弹塑性波动方程组,以实现对两相多孔介质弹塑性动力反应的描述.运用伽辽金方法对该波动方程组进行空间离散,得到两相多孔介质弹塑性波动方程组的伽辽金弱式,并应用中心差分法与Newmark常平均加速度法相结合的时域积分方法,对上述波动方程组进行时间离散,构造求解两相多孔介质弹塑性波动方程组的显式时间积分列式,从而形成流体饱和两相多孔介质弹塑性动力反应计算分析的时域显式有限元方法.该方法采用了解耦技术,不需要求解联立方程组,具有节省计算机内存空间和能够提高计算速度等优点.
    Abstract: In order to describe the elasto-plastic dynamic response of fluid-saturated porous media, incremental elasto-plastic wave equations of fluid-saturated porous media are developed by the fundmental theory of continuum mechanics and in accordunce with the characteristic of fluid-saturated porous media. The above equations are divided in the space domain to get their Galerkin formula, and these formulas are divided in the time domain with the integral method, which consists of the central difference method and the Newmark constant average acceleration method to get the explicit time integral formulas for solving the above wave equations. On the basis of the integral formulas mentioned above, the time-domain explicit finite element method is developed for calculation and analysis of the elasto-plastic dynamic response of fluid-saturated porous media. In this method, the decoupling technique is adopted and it does not need to solve a set of linear equations in each time step, so the compuer memory space can be saved considerably and the calculation speed can be increased sharply by using it.
  • [1]

    ZIENKIEWICZ O C, SHIOMI T. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 71-96.

    [2]

    PREVOST J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure[J]. Soil Dynamics and Earthquake Engineering, 1985, 4(4): 183-202.

    [3] 赵成刚,王进廷,史培新,等.流体饱和两相多孔介质动力反应分析的显式有限元法[J].岩土工程学报,2001,23 (2):178—182.ZHAO Cheng-gang, WANG Jin-ting, SHI Pei-xin, et al. Dynamic analysis of fluid-saturated porous media by using explicit finite element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 178-182. (in Chinese)
    [4] 李亮.流体饱和两相多孔介质动力反应计算分析[D].北京:北京交通大学土木建筑工程学院,2004 LI Liang. Calculation and analysis to the dynamic response of fluid-saturated porous media[D]. A Dissertation Submitted to the Academic Committee of Beijing Jiaotong University for the Degree of Doctor of Engineering, 2004. (in Chinese)
    [5] 龚晓南.土塑性力学(第2版)[M].杭州:浙江大学出版社,1999.
    [6] 徐芝纶.弹性力学(第3版)[M].北京:高等教育出版社,1990.
    [7] 王勖成,邵敏.有限单元法基本原理和数值方法(第2版)[M].北京:清华人学出版社,1997.
    [8] 辛克维奇O C,摩根K.有限元与近似法[M].北京:人民交通出版社,1989.
    [9]

    LIAO Z P, WONG H L. A transmitting boundary for the numerical simulation of elastic wave propagation[J]. Soil Dynamics and Earthquake Engineering, 1984, 3(4): 174-183.

计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-10-19
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回