• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

动脉血管组织的超弹性模型与应力-应变关系

刘君, 杨庆生

刘君, 杨庆生. 动脉血管组织的超弹性模型与应力-应变关系[J]. 北京工业大学学报, 2006, 32(S1): 35-40.
引用本文: 刘君, 杨庆生. 动脉血管组织的超弹性模型与应力-应变关系[J]. 北京工业大学学报, 2006, 32(S1): 35-40.
LIU Jun, YANG Qing-sheng. The Hyperelastic Model and Stress-strain Relation of Artery[J]. Journal of Beijing University of Technology, 2006, 32(S1): 35-40.
Citation: LIU Jun, YANG Qing-sheng. The Hyperelastic Model and Stress-strain Relation of Artery[J]. Journal of Beijing University of Technology, 2006, 32(S1): 35-40.

动脉血管组织的超弹性模型与应力-应变关系

基金项目: 

国家自然科学基金(10272006,30470439)

北京市优秀人才专项资助(20041A0501517)

详细信息
    作者简介:

    刘君: 杨庆生(1962-),男,河北故城人,教授。

  • 中图分类号: TB330.1

The Hyperelastic Model and Stress-strain Relation of Artery

  • 摘要: 为了研究血管的超弹性能,建立了动脉血管的2种各向同性超弹性材料模型。应用三维有限元方法对血管的双向拉伸实验进行模拟计算,通过与实验结果比较证明,在一定变形范围内,血管为各向同性超弹性材料,它的应力-应变关系可以用这2种模型表示,在不同的变形范围内,血管内各类纤维的走向和性能决定血管的宏观力学性能。
    Abstract: In order to study the hyperelastic properties of the artery, this paper established two kinds of isotropic hyperelastic models of artery. The stress-strain relations of the artery under biaxial loadings were simulated by using 3D finite element method. It is shown that in certain range of deformation, the stressstrain relations of isotropic artery can exactly be expressed by the present two models. It is also concluded that the orientations and properties of blended fibers in the artery walls contribute to the macro-properties of the artery.
  • [1]

    HOLZAPFEL G A, GASSER T C, OGDEN R W. A new constitutive framework for Arterial wall mechanics and a comparative study of material models[J]. J Elasticity, 2000, 61(1-3): 1-48.

    [2]

    RHODIN G A J. Handbook of physiology, the cardiovascular system[M]. Maryland: American Physiologial Society, 1980: 1-31.

    [3]

    FUNG Y C, FRONEK K, PATITUCCI P. Pseudoelasticity of arteries and the choice of its mathematical expression[J]. Am Physiol Soc, 1979, 237(5): 620-631.

    [4]

    CHUONG C J, FUNG Y C. Three-dimensional stress distribution in arteries [J]. Trans ASME, 1983, 105(3): 268-274.

    [5]

    CHUONG C J, FUNG Y C. Compressibility and constitutive equation of arterial wall in radial compression experiments[J]. J Biomech, 1984, 17(1): 35-40.

    [6]

    HOLZAPFEL G A, EBERLEIN R, WRIGGERS P. A new Axisymmetrical membrane element for anisotropic, finite strain analysis of arteries[J].Commun Num Meth Eng, 1996, 12(8): 507-517.

    [7]

    HOLZAPFEL G A, WEIZSACKER H W. Biomechanical behavior of the arterial wall and its numerical characterization[J]. Comput Bio Med, 1998, 28(4): 377-392.

    [8]

    BONET J. Nonlinear continuum mechanics for finite element analysis[M]. Britain: Cambridge University Press, 1997, 1-240.

    [9] 王海明,杨庆生.生物组织的复合材料模型与宏微观性能分析[J].复合材料学报,2005,22(增刊):177—181.WANG Hai-ming, YANG Qing-sheng. The composite model and macro/micro property analysis of biological tissue[J]. Acta Materiae Compositae Sinica, 2005, 22(Supp.):177-181.
计量
  • 文章访问数:  89
  • HTML全文浏览量:  17
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-09
  • 网络出版日期:  2022-12-29

目录

    /

    返回文章
    返回