关于复迭代的Julia集的注记

    A Note Concerning Julia Set of Complex Iteration

    • 摘要: 提出了把复迭代的Julia集及充满Julia集的概念作一定程度的拓广(原先在文献中所认为的Julia集仍是拓广后的Julia集),后指出当指定任何一个三角形区域之后,它必可是某个复迭代的Julia集。并讨论了一些相关的问题,为建立分形集合分析理论的基础进行了初步探索。

       

      Abstract: For practical use,the fractal sets in 2nd dimensional and 3nd dimensional Euclidean Space are of most importance.This is why Julia sets are still of interest nowadays. Having extended the concept of filled Julia set of a complex iteration,one asserts that every triangle domain is the filled Julia set of certain complex iteration,then some comments are given. The paper serves as a primary step to explore how to construct the foundation of fractal analysis.

       

    /

    返回文章
    返回