• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

污水流量序列关联维数的计算

周玉文, 刘兴坡

周玉文, 刘兴坡. 污水流量序列关联维数的计算[J]. 北京工业大学学报, 2004, 30(2): 190-194.
引用本文: 周玉文, 刘兴坡. 污水流量序列关联维数的计算[J]. 北京工业大学学报, 2004, 30(2): 190-194.
ZHOU Yu-wen, LIU Xing-po. Calculation of the Correlative Dimension of Daily Sewage Flow Series[J]. Journal of Beijing University of Technology, 2004, 30(2): 190-194.
Citation: ZHOU Yu-wen, LIU Xing-po. Calculation of the Correlative Dimension of Daily Sewage Flow Series[J]. Journal of Beijing University of Technology, 2004, 30(2): 190-194.

污水流量序列关联维数的计算

基金项目: 

北京市教委科技发展计划基金资助项目(05004790200201).

详细信息
    作者简介:

    周玉文(1952-),男,辽宁兴城人,教授,博士,博士生导师.

  • 中图分类号: TU992

Calculation of the Correlative Dimension of Daily Sewage Flow Series

  • 摘要: 为了获得污水管网非恒定流模拟精度要求的节点流量过程线,应用分形理论对污水流量序列的变化特性进行研究,并初步分析其中是否存在分形特征.首先,应用延迟时间法(G-P法)重构污水流量序列的相空间,计算关联维数;然后对北京市2个污水处理厂日进厂流量记录进行了研究.为了得到可靠的关联维数,分别研究了时间滞时τ=△t和τ=4△t 2种情况.研究结果表明:①污水流量序列中存在分形特性;②τ=△t时,lnC(r,M)~ln r曲线存在明显的直线段,能够估计到饱和时的关联维数:0.49(污水厂A)和0.53(污水厂B);③τ=4△t时,lnC(r,m)~ln r曲线也存在较为明显的直线段,关联维数为0.75(污水厂A)和0.44(污水厂B);④2个污水流量序列的关联维数定量地说明污水厂流量来源较单一.
    Abstract: In order to obtain the nodal hydrograph suitable for the unsteady flow simulation of urban sanitary sewer networks, the study on the dynamic characteristics of sewage flow series is conducted using fractal theory so as to judge whether there are fractal traits. Firstly, the delayed-time method is used to reconstruct the phase space of sewage flow series and calculate the correlative dimension. Then case studies are carried out based on the daily flow records derived from two wastewater treatment plants (WWTPs) in Beijing. In addition, the correlative dimensions are calculated respectively according to the delayed-time τ =Δt and τ = 4Δt. The results indicate that (1) the fractal traits exist in sanitary flow series; (2) the distinct linear section occurs within ln C(r, m) - ln r curv.es and the correlative dimension is 0.49 for WWTP A and 0.53 for WWTP B when τ= Δt;(3) the distinct linear section also occurs in ln C(r, m) - ln r curves whenτ = 4 Δt and the correlative dimension is 0.75 for WWTP A and 0.44 for WWTP B;(4) the correlative dimensions of the flow series quantitatively show that the flow source of WWTP is simplex.
  • [1] 岑国平,沈晋,范荣生.城市暴雨径流计算模型的建立和检验[J].西安理工大学学报,1996,12(3) :184-225. CEN Guo-ping, SHEN Jin, FAN Rong-sheng. The establishment and verification of urban storm runoff model[J]. Journal of Xi'an University of Technology, 1996, 12(3) : 184-225. (in Chinese)
    [2] 岑国平.城市雨水径流计算模型[J].水利学报,1990(10) :68-75. CEN Guo-ping. A model to simulate stormwater runoff in urban area[J]. Journal of Hydraulic Engineering, 1990(10) : 68-75. (in Chinese)
    [3] 周玉文,赵洪宾.城市雨水径流模型研究[J].中国给水排水,1997,13(4) :4-6. ZHOU Yu-wen, ZHAO Hong-bin. A study on urban storm runoff model[J]. China Water and Wastewater, 1997, 13(4) : 4-6. (in Chinese)
    [4] 周玉文,戴书健.城市排水系统非恒定流模拟模型研究[J].北京工业大学学报,2001,27(1) :84-86. ZHOU Yu-wen, DAI Shu-jian. Study on unsteady flow simulation model of urban drainage system[J]. Journal of Beijing Polytechnic University, 2001, 27(1) : 84-86. (in Chinese)
    [5] 周玉文,孟昭鲁.瞬时单位线法推求雨水管网入流流量过程线的研究[J].给水排水,1995,21(3) :5-9. ZHOU Yu-wen, MENG Zhao-lu. Study on course curve of inlet flowrate into rain-water network by instantaneous unit line (IUL) theory[J]. Water & Wastewater Engineering, 1995, 21(3) : 5-9. (in Chinese)
    [6] 周玉文,赵洪宾.排水管网理论与计算[M].北京:中国建筑工业出版社,2000. ZHOU Yu-wen, ZHAO Hong-bin. Theories and Calculations of Urban Drainage Network[M]. Beijing: China Architecture & Building Press, 2000. (in Chinese)
    [7]

    GREENE R G, CRUISE J F. Urban watershed modeling using geographic information system[J]. Journal ofwater resources planning and management, 1995, 121(34) : 318-325.

    [8]

    BUTLER D, GRAHAM N J D. Modeling dry weather wastewater flow in sewer networks[J]. American Societyof Civil Engineers, Journal of Environmental Engineering Division, 1995, 121(2) : 161-173.

    [9] 丁晶,王文圣,金菊良.论水文学中的尺度分析[J].四川大学学报(工程科学版),2003,35(3) :9-13. DING Jing, WANG Wen-sheng, JIN Ju-liang. Scale analysis in hydrology[J]. Journal of Sichuang University (Engineering Science Edition), 2003, 35(3) : 9-13. (in Chinese)
    [10] 吴彤.自组织方法论研究[M].北京:清华大学出版社,2001. 114-117. WU Tong. Study on Self-Organizing Methodology[M]. Beijing: Tsinghua University Press, 2001. 114-117. (in Chinese)
    [11] 黄润生.混沌及其应用[M].第2版.武汉:武汉大学出版社,2000. 176-265. HUANG Run-sheng. Chaos and its Applications[M]. 2nd ed. Wuhan: Wuhan University Press, 2000. 176-265. (in Chinese)
    [12] 谢正栋,张永勤,徐敏,等.淮河流域洪水的分形特征及可预报时间研究[J].南京大学学报(自然科学版),2003,39(1) :113-119. XIE Zheng-dong, ZHANG Yong-qin, XU Min, et al. Fractal traits and predictable time analysis for flood series in the huaihe river basin[J]. Journal of Nanjing Universiry (Natural Sciences), 2003, 39(1) : 113-119. (in Chinese)
    [13] 傅军,丁晶.嘉陵江流域形态及流量过程分维研究[J].成都科技大学学报,1995(1) :74-80. FU Jun, DING Jing. The preliminary study on the fractal dimension of the flow hydrograph and basin configuration in jialing river[J]. Journal of Chengdu University of Science and Technology, 1995(1) : 74-80. (in Chinese)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-12-22
  • 网络出版日期:  2022-11-02

目录

    /

    返回文章
    返回