一种基于结构感知的肝血管分割模型

    A Structure-aware Segmentation Model for Hepatic Vessel

    • 摘要: 为了在缺乏大量肝血管标注信息的情况下增强肝血管结构分割, 提出了局部-长距离-相邻信息融合模块, 并将其嵌入U-Net的编码阶段, 得到一种基于结构感知的肝血管分割网络。该模块有3个分支: 提取特征图局部信息的残差卷积模块, 利用自注意力机制提取特征图的全局信息的长距离提取模块, 以及利用相邻切片补充上下文信息的相邻信息提取模块。通过将以上3个分支模块的输出特征图进行融合, 可以有效提升网络的血管结构感知能力, 缓解2D网络无法表征血管立体走向与3D网络训练数据不足的问题。分别在MICCAI十项全能数据集中的肝血管与肿瘤数据集和三甲医院收集标注的自采肝血管数据集上进行了广泛的对比实验。结果表明, 与多种主流的分割算法相比, 该算法取得了最优的血管分割性能。所提出的方法在MICCAI数据集上Dice值达到64.04%, 在自采肝血管数据集上Dice值达到了72.07%。

       

      Abstract: To enhance hepatic vessel structure segmentation in the absence of large amount of hepatic vessel label information, this paper proposed a local-global-adjacent information fusion module and embeded it into the encoding phase of U-Net, thus obtaining a structure-aware hepatic vessel segmentation network. The module has three branches, including residual convolution module extracting local information of feature maps, long distance information extraction module using the self-attention mechanism to extract global information of feature map and adjacent information extraction module using adjacent slices to supplement contextual information. By fusing the output feature maps of the above three branch modules, the vessel structure perception capability of the network can be effectively improved, and the problems of the 2D network unable to represent the vessel's three-dimensional direction and insufficient training data of the 3D network can be effectively alleviated. In this paper, extensive comparative experiments were conducted on the hepatic vessel and tumor datasets in the Medical Segmentation Decathlon dataset and the hepatic vessel dataset collected and labeled by us in a third-class hospital. Results show that our method achieves the optimal performance compared with several mainstream U-Net segmentation algorithms. The proposed method's Dice reaches 64.04% on the MICCAI dataset and 72.07% on the dataset gathered by us.

       

    /

    返回文章
    返回