基于轻量级神经网络的地基云图识别

    Ground-based Cloud Recognition Based on Lightweight Neural Network

    • 摘要: 针对目前云识别效率低下,同时缺乏公认且严谨、公开的地基云数据集问题,利用专业设备结合人工标注和迁移学习,构建了目前规模最大且符合国际气象组织标准的云公开数据集HBMCD,并且在此基础上,利用深度可分离卷积、膨胀卷积等技巧构建基本单元,通过组合不同的基本单元构建了轻量级云图分类模型LCCNet.经过多组对比实验,证明了LCCNet不仅参数量低、运算复杂度低,而且针对HBMCD数据集具有高达97.35%的准确率,为设备集成与实际应用提供了可能性.

       

      Abstract: In view of the current low efficiency of cloud identification and the lack of recognized and rigorous open cloud dataset, the largest open cloud dataset HBMCD was constructed by professional equipment combined with manual annotation and transfer learning. It conformed to the standards of the international meteorological organization under the guidance of professionals. On the basis of this, the basic unit by means of depth separable convolution and expansion convolution was constructed, and the light cloud image classification model LCCNet was established by repeating different basic units. Through enough comparative experiments, it is proved that LCCNet not only has low level at parameters and operation complexity, but also has a high accuracy (97.35%) for HBMCD data set, which provides a possibility for equipment integration and practical application.

       

    /

    返回文章
    返回