基于AHMRRT的移动机器人路径规划算法

    Path Planning Algorithm of Mobile Robot Based on AHMRRT

    • 摘要: 为解决单向快速探索随机树(rapid exploring random tree,RRT)算法路径规划效率低且易陷入局部极小点的问题,提出了一种自适应启发式多快速探索随机树(adaptive heuristic multiple rapid exploring random tree,AHMRRT)路径规划算法. 一方面,基于多随机树构建策略的AHMRRT算法可以在起始点、目标点、子目标点生成4棵随机树,同时进行扩展搜索,从而提高路径规划效率;另一方面,通过在单棵随机树生长过程中添加自适应启发式偏置因子,AHMRRT算法可以根据环境中障碍物的情况自适应地改变新节点的生成策略. 探索自由空间时,该算法可以在偏置因子的作用下迅速向目标点扩展以提高搜索效率;探索多障碍物空间时,该算法将调用随机采样函数以防止落入局部最优. 在仿真实验中,设计了4种环境下AHMRRT算法与随机概率目标快速探索随机树(probability goal RRT,PGRRT)、双向快速探索随机树(bidirectional RRT,BRRT)算法的对比实验,仿真实验结果证明了该算法的可行性和高效性.

       

      Abstract: To solve the problem that the path planning efficiency of the traditional one-way rapid exploring random tree (RRT) algorithm is low and easy to fall into the local minimum point, a path planning algorithm of adaptive heuristic multiple rapid exploring random tree (AHMRRT) was proposed. On one hand, the AHMRRT algorithm based on the multi-random tree construction strategy can simultaneously generate four random trees from the starting point, target point, and sub-target point for extended search for improving path planning efficiency. On the other hand, the algorithm adaptively changed the generation strategy of new node according to the conditions of obstacles in the environment by adding an adaptive heuristic bias factor during the growth of a single random tree. When exploring free space, the algorithm quickly expanded to the target point under the influence of the bias factor to improve the search efficiency. When exploring multiple obstacle spaces, the algorithm called the random sampling function to prevent it from falling into the local optimum. In the simulation experiment, the comparative experiments of AHMRRT and PGRRT and BRRT algorithms were designed in four different environments. The simulation experiment results prove the feasibility and efficiency of the algorithm.

       

    /

    返回文章
    返回