• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

一类32维半单Hopf代数的拟三角结构

杨士林, 宋嫒月

杨士林, 宋嫒月. 一类32维半单Hopf代数的拟三角结构[J]. 北京工业大学学报, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006
引用本文: 杨士林, 宋嫒月. 一类32维半单Hopf代数的拟三角结构[J]. 北京工业大学学报, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006
YANG Shilin, SONG Aiyue. Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra[J]. Journal of Beijing University of Technology, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006
Citation: YANG Shilin, SONG Aiyue. Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra[J]. Journal of Beijing University of Technology, 2019, 45(8): 815-820. DOI: 10.11936/bjutxb2018090006

一类32维半单Hopf代数的拟三角结构

基金项目: 

国家自然科学基金资助项目 11671024

北京市自然科学基金资助项目 1162002

详细信息
    作者简介:

    杨士林(1964-), 男, 教授, 博士生导师, 主要从事量子群及表示方面的研究, E-mail:slyang@bjut.edu.cn

  • 中图分类号: O153.3

Quasitriangular Structure for a Class of 32-dimension Semisimple Hopf Algebra

  • 摘要:

    Kac和Paljutkin构造了一类非交换非余可换的半单Hopf代数K8,后来Masuoka用提升方法重新构造了这类代数.Ore扩张方法是构造新的非交换非余可换Hopf代数的一类很重要的方法,通过它可以得到许多有意义的量子代数.人们用Ore扩张方法构造了更为广泛的非交换非余可换半单Hopf代数H2n2,其余代数乘法由Drinfeld扭元及代数自同构所确定.推广了Hopf代数K8,首先给出一类32维非交换非余可换的半单Hopf代数H32的定义,此类Hopf代数可以通过给定域上的Abel群代数K[C4×C4]利用特殊的Ore扩张得到,它有一个子Hopf代数,恰好同构于8维非交换非余交换的唯一的半单Hopf代数K8.然后,主要研究Hopf代数H32的拟三角性.通过详细计算,精确地得到Hopf代数H32的所有泛R-矩阵,结合Wakui得出的结论,得知H8为极小拟三角,而H32非极小拟三角.

    Abstract:

    Kac and Paljutkin constructed a class of non-commutative and non-cocommutative semisimple Hopf algebra K8, then Masuoka reconstructed this algebra by lifting method. Ore extension is an important method to construct new examples of neither commutative nor cocommutative Hopf algebras. Many interesting quantum algebras can be obtained in this way. More extensive non-commutative and non-cocommutative semisimple Hopf algebra H2n2 was constructed by means of Ore extension. Its coalgebraic multiplication was determined by the Drinfeld twist element and some algebraic automorphism. In this paper, the definition of a class of non-commutative and non-cocommutative semisimple Hopf algebra H32of dimension 32 was given, which can be obtained by the special Ore extension for the given K[C4×C4] of Abel group algebras of order 16. It has a sub-Hopf algebra of dimension 8, which is just isomorphic to the unique neither commutative nor cocommutative semisimple 8-dimension Hopf algebra K8. Then, the main task was to study the quasitriangular structure of the Hopf algebra H32. Through detailed calculation, all the universal R-matrices for this class of Hopf algebras were given. Combining with Wakui's conclution, we know that H8 is a minimal quasitriangular Hopf algebra; however, H32 is not.

  • 设$\mathbb{C} $为复数域,除特殊说明外文中的代数,Hopf代数和⊗均定义在复数域$\mathbb{C} $上.

    拟三角Hopf代数是由Drinfeld[1]引入.它提供了量子Yang-Baxter方程的解.文献[2-4]对其进行了大量的研究并得到了许多重要的结果.因此给出某类Hopf代数的所有拟三角结构具有十分重要的意义.

    20世纪60年代,Kac等[5]引入了一类非交换非余可换的半单Hopf代数,Masuoka[6]用提升方法重新构造了这类代数. Ore扩张[7-12]是一种重要的构造新的Hopf代数的方法. Pansera[13]构造了一类非交换非余可换的2n2维的半单Hopf代数H2n2.本文研究一类32维非交换非余可换半单Hopf代数的拟三角结构,这类Hopf代数也可通过Ore扩张得到,此类代数包含8维的Hopf代数与K8同构.作为Hopf代数的一种推广,文献[14]引入了弱Hopf代数的概念,进而得到了比较广泛的研究,有许多这类弱Hopf代数的新例子,例如苏冬等[15]研究了2类特殊的有限维Δ-结合代数的Green环,这2类代数均是由唯一的非交换非余可换的8维半单Hopf代数K8形变而得,主要是通过弱化Hopf代数的结构,使之成为弱Hopf代数或者Δ-结合代数.程诚等[16]研究了An-型非标准量子群的弱Hopf代数的结构.本文给出这类32维半单Hopf代数H32的所有泛R-矩阵,从而容易知道它不是极小拟三角的.

    Hopf代数相关概念和基本知识可见文献[17].

    首先,给出一类32维Hopf代数的定义.

    定义1ω是4次本原单位根,Hopf代数H32作为代数由xyz生成,满足下面关系.

    其代数结构定义为

    $$ {x^4} = 1,{y^4} = 1 $$
    $$ xy = yx,zx = yz,zy = xz $$
    $$ {z^2} = \frac{1}{2}\left[ {\left( {1 + {x^2}} \right) + \left( {1 - {x^2}} \right){y^2}} \right] $$

    其余代数结构定义为

    $$ \Delta \left( x \right) = x \otimes x $$
    $$ \Delta \left( y \right) = y \otimes y $$
    $$ \Delta \left( z \right) = \frac{1}{2}\left[ {\left( {1 + {x^2}} \right) \otimes 1 + \left( {1 - {x^2}} \right) \otimes {y^2}} \right]\left( {z \otimes z} \right) $$
    $$ \varepsilon \left( x \right) = \varepsilon \left( y \right) = \varepsilon \left( z \right) = 1 $$

    对极为

    $$ S\left( x \right) = {x^3},S\left( y \right) = {y^3},S\left( z \right) = z $$

    $$ J = \frac{1}{2}\left[ {\left( {1 + {x^2}} \right) \otimes 1 + \left( {1 - {x^2}} \right) \otimes {y^2}} \right] $$

    Δ(z)=J(zz).直接验证可知,它是非交换非余可换的Hopf代数.

    $$ t = \left( {\sum\limits_{i = 0}^3 {{x^i}} } \right)\left( {\sum\limits_{j = 0}^3 {{y^i}} } \right)\left( {1 + z} \right) $$

    H32的左(右)积分.而且

    $$ \varepsilon \left( {\int_H^l {} } \right) = \varepsilon \left( {\int_H^r {} } \right) \ne 0 $$

    所以,H32是半单Hopf代数.它有一组基

    $$ \left\{ {{x^i}{y^j},{x^i}{y^j}z\left| {0 \le i,j \le 3} \right.} \right\} $$

    对任意0≤i≤3,0≤j≤3,令

    $$ {e_i} = \frac{1}{4}\sum\limits_{t = 0}^3 {{\omega ^{ - it}}{x^t}} $$
    $$ {f_j} = \frac{1}{4}\sum\limits_{k = 0}^3 {{\omega ^{ - kj}}{y^k}} $$

    易知

    $$ J = \sum\limits_{i = 0}^3 {{e_i} \otimes {y^{2i}}} $$

    Eij=eifj, 则有Eijz=zEji且{Eij, Eijz|0≤i, j≤3}是H32的一组基.易知

    $$ x{E_{ij}} = {\omega ^i}{E_{ij}} $$
    $$ y{E_{ij}} = {\omega ^j}{E_{ij}} $$
    $$ {E_{ij}}{E_{kl}} = {\delta _{ik}}{\delta _{jl}}{E_{ij}} $$
    $$ \sum\limits_{i,j = 0}^3 {{E_{ij}}} = 1 $$

    拟三角Hopf代数的定义在许多文献中可以找到,这里为方便应用给出它的定义.

    定义2  设H是Hopf代数, RHH中的可逆元,(H, R)称为拟三角Hopf代数,若

    $$ {\Delta ^{{\rm{cop}}}}\left( h \right) = \mathit{\boldsymbol{R}}\Delta \left( h \right){\mathit{\boldsymbol{R}}^{ - 1}} $$
    $$ \left( {\Delta \times id} \right)\left( \mathit{\boldsymbol{R}} \right) = {\mathit{\boldsymbol{R}}^{13}}{\mathit{\boldsymbol{R}}^{23}} $$
    $$ \left( {id \times \Delta } \right)\left( \mathit{\boldsymbol{R}} \right) = {\mathit{\boldsymbol{R}}^{13}}{\mathit{\boldsymbol{R}}^{12}} $$

    式中$\mathrm{R}=\sum\limits_{i}{{{a}_{i}}}\otimes {{b}_{i}}$,且

    $$ {\mathit{\boldsymbol{R}}^{13}} = \sum\limits_i {{a_i} \otimes 1 \otimes {b_i}} $$
    $$ {\mathit{\boldsymbol{R}}^{23}} = \sum\limits_i {1 \otimes {a_i} \otimes {b_i}} $$
    $$ {\mathit{\boldsymbol{R}}^{12}} = \sum\limits_i {{a_i} \otimes {b_i} \otimes 1} $$
    $$ \tau :H \otimes H \to H \otimes H $$
    $$ \tau \left( {a \otimes b} \right) = b \otimes a $$
    $$ {\Delta ^{{\rm{cop}}}} = \tau \circ \Delta $$

    此时R称为泛R-矩阵.容易知道

    $$ \left( {{\rm{id}} \otimes \varepsilon } \right)\left( \mathit{\boldsymbol{R}} \right) = \left( {\varepsilon \otimes {\rm{id}}} \right)\left( \mathit{\boldsymbol{R}} \right) = 1 $$

    引理1[18]G=〈g〉×〈h〉, 其中〈g〉和〈h〉是n阶循环群,ζn次本原单位根,则K[G]的任意泛R-矩阵均可表示为

    $$ \mathit{\boldsymbol{R}}_{pqrs}^{K\left[ G \right]}: = \sum\limits_{i,j = 0}^{n - 1} {\sum\limits_{k,l = 0}^{n - 1} {{\zeta ^{\left( {pij + rkj} \right) + \left( {skl + qil} \right)}}{E_{ik}} \times {E_{jl}}} } $$

    式中

    $$ {E_{ik}} = \frac{1}{{{n^2}}}\sum\limits_{j,l = 0}^{n - 1} {{\zeta ^{ - ij - kl}}{g^j}{h^l}} $$

    pqrs均为0, 1,…,n-1.

    对于Hopf代数H32,下面是本文的主要定理.

    定理1   H32是拟三角Hopf代数,其所有泛R-矩阵可表示为

    $$ {\mathit{\boldsymbol{R}}_{p,q}} = \sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {{\omega ^{pij + \left( {q + 2} \right)kj + pkl + qil}}{E_{ik}} \otimes {E_{jl}}} } $$

    式中pq均为0, 1, 2, 3.

    证明:由前面讨论知

    $$ \left\{ {{E_{ik}},{E_{ik}}z\left| {0 \le i,k \le 3} \right.} \right\} $$

    H32的一组基.

    假定RH32H32, 且(H32, R)是拟三角Hopf代数,它的泛R-矩阵写成

    $$ \mathit{\boldsymbol{R}} = \sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} } } ,\mathit{\boldsymbol{R}}_{jlt}^{iks} \in \mathbb{F} $$

    由于$\left( {{\rm{id}} \otimes \varepsilon } \right){\mathit{\boldsymbol{R = }}}\left( {\varepsilon \otimes {\rm{id}}} \right){\mathit{\boldsymbol{R = }}}1$,从而

    $$ \sum\limits_{s,t = 0}^1 {\mathit{\boldsymbol{R}}_{jlt}^{00s}{E_{jl}}{z^t}} = 1 $$
    $$ \sum\limits_{s,t = 0}^3 {\mathit{\boldsymbol{R}}_{00t}^{iks}{E_{ik}}{z^s}} = 1 $$

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}_{jl0}^{000} + \mathit{\boldsymbol{R}}_{jl0}^{001} = 1,\mathit{\boldsymbol{R}}_{jl1}^{000} + \mathit{\boldsymbol{R}}_{jl1}^{001} = 0}\\ {\mathit{\boldsymbol{R}}_{000}^{ik0} + \mathit{\boldsymbol{R}}_{001}^{ik1} = 1,\mathit{\boldsymbol{R}}_{jl1}^{000} + \mathit{\boldsymbol{R}}_{jl1}^{001} = 0} \end{array} $$ (1)

    另一方面,对h=xyz,直接计算Δcop(h)R=RΔ(h),当且仅当

    $$ \begin{array}{*{20}{c}} {{\Delta ^{{\rm{cop}}}}\left( x \right)\mathit{\boldsymbol{R}} = }\\ {\left( {x \otimes x} \right)\sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,t = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} } } = }\\ {\sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}\left( {x \otimes x} \right)\left( {{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} \right)} } } = }\\ {\sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {{\omega ^{i + j}}\mathit{\boldsymbol{R}}_{jlt}^{iks}\left( {{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} \right)} } } } \end{array} $$
    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\Delta \left( x \right) = }\\ {\sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}\left( {x \otimes x} \right)} } } = }\\ {\sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}\left( {{x^{{\delta _{0s}}}}{y^{{\delta _{1s}}}} \otimes {x^{{\delta _{0t}}}}{y^{{\delta _{1t}}}}} \right)\left( {{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} \right)} } } = }\\ {\sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}{\omega ^{{\delta _{0s}}i + {\delta _{1s}}k + {\delta _{0t}}j + {\delta _{1t}}l}}\left( {{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} \right)} } } } \end{array} $$

    同理可得

    $$ {\Delta ^{{\rm{cop}}}}\left( y \right)\mathit{\boldsymbol{R}} = \sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {{\omega ^{k + l}}\mathit{\boldsymbol{R}}_{jlt}^{iks}\left( {{E_{jk}}{z^s} \otimes {E_{jl}}{z^t}} \right)} } } $$
    $$ \mathit{\boldsymbol{R}}\Delta \left( y \right) = \sum\limits_{s,t = 0}^1 {\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jlt}^{iks}{\omega ^{{\delta _{0s}}k + {\delta _{1s}}i + {\delta _{0t}}l + {\delta _{1t}}j}}\left( {{E_{ik}}{z^s} \otimes {E_{jl}}{z^t}} \right)} } } $$
    $$ \begin{array}{*{20}{c}} {{\Delta ^{{\rm{cop}}}}\left( z \right)\mathit{\boldsymbol{R}} = }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{ik0}\left( {1 + {\omega ^{2l}} + {\omega ^{2i}} - {\omega ^{2i + 2l}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}} \otimes {E_{jl}}} \right) + }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl1}^{ik0}\left( {1 + {\omega ^{2l}} + {\omega ^{2i}} - {\omega ^{2i + 2l}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}} \otimes {E_{jl}}z} \right) + }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{ik1}\left( {1 + {\omega ^{2l}} + {\omega ^{2i}} - {\omega ^{2i + 2l}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}}z \otimes {E_{jl}}} \right) + }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl1}^{ik1}\left( {1 + {\omega ^{2l}} + {\omega ^{2i}} - {\omega ^{2i + 2l}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}}z \otimes {E_{jl}}z} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}\Delta \left( z \right) = \frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{ik0}\left( {1 + {\omega ^{2k}} + {\omega ^{2j}} - {\omega ^{2k + 2j}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}} \otimes {E_{jl}}} \right) + }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl1}^{ik0}\left( {1 + {\omega ^{2k}} + {\omega ^{2l}} - {\omega ^{2k + 2l}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}} \otimes {E_{jl}}z} \right) + }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{ik1}\left( {1 + {\omega ^{2i}} + {\omega ^{2j}} - {\omega ^{2i + 2j}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}}z \otimes {E_{jl}}} \right) + }\\ {\frac{1}{2}\sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl1}^{ik1}\left( {1 + {\omega ^{2i}} + {\omega ^{2j}} - {\omega ^{2i + 2l}}} \right)} } \cdot }\\ {\left( {z \otimes z} \right)\left( {{E_{ik}}z \otimes {E_{jl}}z} \right)} \end{array} $$

    从而对h=xyz, Δcop(h)R=RΔ(h)当且仅当

    $$ {\omega ^{i + j}}\mathit{\boldsymbol{R}}_{jlt}^{iks} = {\omega ^{{\delta _{0s}}i + {\delta _{1s}}k + {\delta _{0t}}j + {\delta _{1t}}l}}\mathit{\boldsymbol{R}}_{jlt}^{iks} $$ (2)
    $$ {\omega ^{k + l}}\mathit{\boldsymbol{R}}_{jlt}^{iks} = {\omega ^{{\delta _{0s}}k + {\delta _{1s}}i + {\delta _{0t}}l + {\delta _{1t}}j}}\mathit{\boldsymbol{R}}_{jlt}^{iks} $$ (3)
    $$ {\left( { - 1} \right)^{kj - il}}\mathit{\boldsymbol{R}}_{jl0}^{ik0} = \mathit{\boldsymbol{R}}_{lj0}^{ki0} $$ (4)
    $$ {\left( { - 1} \right)^{kj - ij}}\mathit{\boldsymbol{R}}_{jl1}^{ik0} = \mathit{\boldsymbol{R}}_{lj1}^{ki0} $$ (5)
    $$ {\left( { - 1} \right)^{ij - il}}\mathit{\boldsymbol{R}}_{jl0}^{ik1} = \mathit{\boldsymbol{R}}_{lj0}^{ki1} $$ (6)
    $$ \mathit{\boldsymbol{R}}_{jl1}^{ik1} = \mathit{\boldsymbol{R}}_{lj1}^{ki1} $$ (7)

    由式(2)~(7)可知,若jl,则Rjl1ik0=0;若ik,则Rjl0ik1=0;若i+jl+k(mod 4), 则Rjl1ik1=0.因此,只要考虑Rjl0ik0Rjj1ik0Rjl0ii1Rjl1mj, ml, 1那些不为零的值即可.

    继续通过直接计算(Δ⊗id)R=R13R23及(id⊗Δ)R=R13R12.其中

    $$ \begin{array}{*{20}{c}} {\left( {\Delta \otimes {\rm{id}}} \right)\mathit{\boldsymbol{R}} = }\\ {\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{a + b,p + q,0}\left( {{E_{ap}} \otimes {E_{bq}} \otimes {E_{jl}}} \right)} } + }\\ {\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\mathit{\boldsymbol{R}}_{jl1}^{a + b,p + q,0}\left( {{E_{ap}} \otimes {E_{bq}} \otimes {E_{jl}}z} \right)} } + }\\ {\frac{1}{2}\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{a + b,p + q,1}\left( {1 + {\omega ^{2a}} + {\omega ^{2q}} - {\omega ^{2a + 2q}}} \right)} } \cdot }\\ {\left( {{E_{ap}}z \otimes {E_{bq}}z \otimes {E_{jl}}} \right) + }\\ {\frac{1}{2}\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\mathit{\boldsymbol{R}}_{jl1}^{a + b,p + q,1}\left( {1 + {\omega ^{2a}} + {\omega ^{2q}} - {\omega ^{2a + 2q}}} \right)} } \cdot }\\ {\left( {{E_{ap}}z \otimes {E_{bq}}z \otimes {E_{jl}}z} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{R}}^{13}}{\mathit{\boldsymbol{R}}^{23}} = }\\ {\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\left[ {\mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl0}^{bq0} + } \right.} } }\\ {\left. {\frac{1}{2}\left( {1 + {\omega ^{2j}} + {\omega ^{2l}} - {\omega ^{2j + 2l}}} \right)\mathit{\boldsymbol{R}}_{jl1}^{ap0}\mathit{\boldsymbol{R}}_{jl1}^{bq0}} \right] \cdot }\\ {\left( {{E_{ap}} \otimes {E_{bq}} \otimes {E_{jl}}} \right) + }\\ {\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\left( {\mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl0}^{bq0} + \mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl1}^{bq0}} \right)} } \cdot }\\ {\left( {{E_{ap}} \otimes {E_{bq}} \otimes {E_{jl}}z} \right) + }\\ {\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\left[ {\mathit{\boldsymbol{R}}_{jl0}^{ap1}\mathit{\boldsymbol{R}}_{jl0}^{bq1} + \frac{1}{2}\left( {1 + {\omega ^{2j}} + {\omega ^{2l}} - } \right.} \right.} } }\\ {\left. {\left. {{\omega ^{2j + 2l}}} \right)\mathit{\boldsymbol{R}}_{jl1}^{ap1}\mathit{\boldsymbol{R}}_{jl1}^{bq1}} \right] \cdot }\\ {\left( {{E_{ap}}z \otimes {E_{bq}}z \otimes {E_{jl}}} \right) + }\\ {\sum\limits_{j,a,b = 0}^3 {\sum\limits_{l,p,q = 0}^3 {\left( {\mathit{\boldsymbol{R}}_{jl1}^{ap1}\mathit{\boldsymbol{R}}_{jl0}^{bq1} + \mathit{\boldsymbol{R}}_{jl0}^{ap1}\mathit{\boldsymbol{R}}_{jl1}^{bq1}} \right)} } \cdot }\\ {\left( {{E_{ap}}z \otimes {E_{bq}}z \otimes {E_{jl}}z} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {\left( {{\rm{id}} \otimes \Delta } \right)\mathit{\boldsymbol{R}} = }\\ {\sum\limits_{s,t = 0}^1 {\sum\limits_{i,a,b = 0}^3 {\sum\limits_{k,p,q = 0}^3 {\mathit{\boldsymbol{R}}_{a + b,p + q,t}^{i,k,s}\left( {1 \otimes {J^{{\delta _{1t}}}}} \right)} } } \cdot }\\ {\left( {{E_{ik}} \otimes {E_{ap}} \otimes {E_{bp}}} \right)\left( {{z^s} \otimes {z^t} \otimes {z^t}} \right)}\\ {{\mathit{\boldsymbol{R}}^{13}}{\mathit{\boldsymbol{R}}^{12}} = \sum\limits_{s,s',t,t' = 0}^1 {\sum\limits_{i,a,b = 0}^3 {\sum\limits_{k,p,q = 0}^3 {\mathit{\boldsymbol{R}}_{bqt}^{iks}\mathit{\boldsymbol{R}}_{apt'}^{iks'}} } } \cdot }\\ {\left( {{E_{ik}}{z^{s + s'}} \otimes {E_{ap}}{z^{s'}} \otimes {E_{bq}}{z^{t + t'}}} \right)} \end{array} $$

    并比较等式两边的系数得

    $$ \mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl0}^{bp1} + {\left( { - 1} \right)^{jl}}\mathit{\boldsymbol{R}}_{jl1}^{ap0}\mathit{\boldsymbol{R}}_{jl1}^{bq1} = 0 $$ (8)
    $$ \mathit{\boldsymbol{R}}_{jl1}^{ap0}\mathit{\boldsymbol{R}}_{lj0}^{bq1} + \mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl1}^{bq1} = 0 $$ (9)
    $$ \mathit{\boldsymbol{R}}_{jl0}^{ap1}\mathit{\boldsymbol{R}}_{jl0}^{bq0} + {\left( { - 1} \right)^{jl}}\mathit{\boldsymbol{R}}_{jl1}^{ap1}\mathit{\boldsymbol{R}}_{lj1}^{bq0} = 0 $$ (10)
    $$ \mathit{\boldsymbol{R}}_{jl1}^{ap1}\mathit{\boldsymbol{R}}_{lj0}^{bq0} + \mathit{\boldsymbol{R}}_{jl0}^{ap1}\mathit{\boldsymbol{R}}_{jl1}^{bq0} = 0 $$ (11)
    $$ \mathit{\boldsymbol{R}}_{jl0}^{a + b,p + q,0} = \mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl0}^{bq0} + {\left( { - 1} \right)^{jl}}\mathit{\boldsymbol{R}}_{jl1}^{ap0}\mathit{\boldsymbol{R}}_{lj1}^{bq0} $$ (12)
    $$ \mathit{\boldsymbol{R}}_{jl1}^{a + b,p + q,0} = \mathit{\boldsymbol{R}}_{jl1}^{ap0}\mathit{\boldsymbol{R}}_{lj0}^{bq0} + \mathit{\boldsymbol{R}}_{jl0}^{ap0}\mathit{\boldsymbol{R}}_{jl1}^{bq0} $$ (13)
    $$ \begin{array}{*{20}{c}} {{{\left( { - 1} \right)}^{aq}}\mathit{\boldsymbol{R}}_{jl0}^{a + b,p + q,1} = \mathit{\boldsymbol{R}}_{jl0}^{ap1}\mathit{\boldsymbol{R}}_{jl0}^{bq1} + }\\ {{{\left( { - 1} \right)}^{jl}}\mathit{\boldsymbol{R}}_{jl1}^{ap1}\mathit{\boldsymbol{R}}_{lj1}^{bq1}} \end{array} $$ (14)
    $$ {\left( { - 1} \right)^{aq}}\mathit{\boldsymbol{R}}_{jl1}^{a + b,p + q,1} = \mathit{\boldsymbol{R}}_{jl1}^{ap1}\mathit{\boldsymbol{R}}_{lj0}^{bq1} + \mathit{\boldsymbol{R}}_{jl0}^{ap1}\mathit{\boldsymbol{R}}_{jl1}^{bq1} $$ (15)
    $$ \mathit{\boldsymbol{R}}_{bq0}^{ik0}\mathit{\boldsymbol{R}}_{ap1}^{ik0} + {\left( { - 1} \right)^{ik}}\mathit{\boldsymbol{R}}_{bq0}^{ik1}\mathit{\boldsymbol{R}}_{ap1}^{ki1} = 0 $$ (16)
    $$ \mathit{\boldsymbol{R}}_{bq0}^{ik10}\mathit{\boldsymbol{R}}_{ap1}^{ki0} + \mathit{\boldsymbol{R}}_{bq0}^{ik0}\mathit{\boldsymbol{R}}_{ap1}^{ik1} = 0 $$ (17)
    $$ \mathit{\boldsymbol{R}}_{bq1}^{ik0}\mathit{\boldsymbol{R}}_{ap0}^{ik0} + {\left( { - 1} \right)^{ik}}\mathit{\boldsymbol{R}}_{bq1}^{ik1}\mathit{\boldsymbol{R}}_{ap0}^{ki1} = 0 $$ (18)
    $$ \mathit{\boldsymbol{R}}_{bq1}^{ik1}\mathit{\boldsymbol{R}}_{aq0}^{ki0} + \mathit{\boldsymbol{R}}_{bq1}^{ik0}\mathit{\boldsymbol{R}}_{aq0}^{ik1} = 0 $$ (19)
    $$ \mathit{\boldsymbol{R}}_{a + b,p + q,0}^{i,k,0} = \mathit{\boldsymbol{R}}_{bq0}^{ik0}\mathit{\boldsymbol{R}}_{ap0}^{ik0} + {\left( { - 1} \right)^{ik}}\mathit{\boldsymbol{R}}_{bq0}^{ik1}\mathit{\boldsymbol{R}}_{ap0}^{ik1} $$ (20)
    $$ \mathit{\boldsymbol{R}}_{a + b,p + q,0}^{ik1} = \mathit{\boldsymbol{R}}_{bq0}^{ik1}\mathit{\boldsymbol{R}}_{ap0}^{ki0} + \mathit{\boldsymbol{R}}_{bq0}^{ik0}\mathit{\boldsymbol{R}}_{ap0}^{ik1} $$ (21)
    $$ \begin{array}{*{20}{c}} {{{\left( { - 1} \right)}^{aq}}\mathit{\boldsymbol{R}}_{a + b,p + q,1}^{ik0} = \mathit{\boldsymbol{R}}_{bq1}^{ik0}\mathit{\boldsymbol{R}}_{ap1}^{ik0} + }\\ {{{\left( { - 1} \right)}^{ik}}\mathit{\boldsymbol{R}}_{bq1}^{ik1}\mathit{\boldsymbol{R}}_{ap1}^{ki1}} \end{array} $$ (22)
    $$ {\left( { - 1} \right)^{aq}}\mathit{\boldsymbol{R}}_{a + b,p + q,1}^{ik1} = \mathit{\boldsymbol{R}}_{bq1}^{ik1}\mathit{\boldsymbol{R}}_{ap1}^{ki0} + \mathit{\boldsymbol{R}}_{bq1}^{ik0}\mathit{\boldsymbol{R}}_{ap1}^{ik1} $$ (23)

    情形一:

    若对任意ikjl、(s, t)=(0, 1)及(s, t)=(1, 0),有Rjltiks=0.

    此时由方程式(23)得到Rjl1ik1=0.这样R-矩阵可表示为

    $$ \mathit{\boldsymbol{R}} = \sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {\mathit{\boldsymbol{R}}_{jl0}^{ik0}{E_{ik}} \otimes {E_{jl}}} } $$

    根据引理1可假定

    $$ \mathit{\boldsymbol{R}}: = {\mathit{\boldsymbol{R}}_{pqrs}} = \sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {{\omega ^{\left( {pij + rkj} \right) + \left( {skl + qil} \right)}}{E_{ik}} \otimes {E_{jl}}} } $$

    此时

    $$ {\Delta ^{{\rm{cop}}}}\left( x \right)\mathit{\boldsymbol{R}} = \mathit{\boldsymbol{R}}\Delta \left( x \right) $$
    $$ {\Delta ^{{\rm{cop}}}}\left( y \right)\mathit{\boldsymbol{R}} = \mathit{\boldsymbol{R}}\Delta \left( y \right) $$

    还要满足

    $$ {\Delta ^{{\rm{cop}}}}\left( z \right)\mathit{\boldsymbol{R}} = \mathit{\boldsymbol{R}}\Delta \left( z \right) $$

    注意到

    $$ {\Delta ^{{\rm{cop}}}}\left( z \right) = {J^\tau }\left( {z \otimes z} \right) = \left( {z \otimes z} \right)J $$
    $$ z{E_{ik}} = {E_{ki}}z $$

    因此有

    $$ \begin{array}{*{20}{c}} {{\Delta ^{{\rm{cop}}}}\left( z \right)\mathit{\boldsymbol{R = }}\left( {z \otimes z} \right)\mathit{\boldsymbol{J}}{\mathit{\boldsymbol{R}}_{pqrs}}\mathit{\boldsymbol{ = }}}\\ {{{\left( { - 1} \right)}^{jk}}{\omega ^{\left( {pkl + ril} \right) + \left( {sij + qkj} \right)}}\left( {{E_{ik}} \otimes {E_{jl}}} \right)\left( {z \otimes z} \right)} \end{array} $$
    $$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{R}}_{pqrs}}\Delta \left( z \right)\mathit{\boldsymbol{ = }}{{\left( { - 1} \right)}^{il}}{\omega ^{\left( {pij + rkj} \right) + \left( {skl + qil} \right)}} \cdot }\\ {\left( {{E_{ik}} \otimes {E_{jl}}} \right)\left( {z \otimes z} \right)} \end{array} $$

    因此

    $$ {\left( { - 1} \right)^{il - kj}} = {\omega ^{pij + rkj + skl + qil - pkl - ril - sij - qkj}} $$

    $$ 1 = {\omega ^{\left( {p - s} \right)ij + \left( {r - q - 2} \right)kj + \left( {s - p} \right)kl + \left( {q - r + 2} \right)il}} $$

    对所有的ijkl成立,从而有p=s, r=q+2.

    此时H32具有如下泛R-矩阵

    $$ {\mathit{\boldsymbol{R}}_{p,q}} = \sum\limits_{i,j = 0}^3 {\sum\limits_{k,l = 0}^3 {{\omega ^{pij + \left( {q + 2} \right)kj + pkl + qil}}{E_{ik}} \otimes {E_{jl}}} } $$ (24)

    式中pq均为0, 1, 2, 3.

    情形二:

    若对某些j0l0, 有Rj0l00001≠0.

    根据式(10),当a=p=0时,对任意bq, 有Rj0l00001Rj0l00bq0=0.因而必有Rj0l00bq0=0.特别地,有Rj0l00010=0.若存在某个数对j′≠l′使得Rjl′0001=0, 则Rjl′0000=1.由式(12)可得

    $$ \mathit{\boldsymbol{R}}_{j'l'0}^{ap0} = {\left( {\mathit{\boldsymbol{R}}_{j'l'0}^{010}} \right)^a}{\left( {\mathit{\boldsymbol{R}}_{j'l'0}^{100}} \right)^p} $$

    $$ \mathit{\boldsymbol{R}}_{j'l'0}^{000} = {\left( {\mathit{\boldsymbol{R}}_{j'l'0}^{010}} \right)^4}{\left( {\mathit{\boldsymbol{R}}_{j'l'0}^{100}} \right)^4} = 1 $$
    $$ \mathit{\boldsymbol{R}}_{j'l'0}^{000} = {\left( {\mathit{\boldsymbol{R}}_{j'l'0}^{010}} \right)^4}{\left( {\mathit{\boldsymbol{R}}_{j'l'0}^{100}} \right)^4} = 1 $$

    可知Rjl′0100≠0, Rjl′0010≠0.又根据式(20)有

    $$ 0 \ne \mathit{\boldsymbol{R}}_{j'l'0}^{010} = {\left( {\mathit{\boldsymbol{R}}_{100}^{010}} \right)^{j'}}{\left( {\mathit{\boldsymbol{R}}_{010}^{010}} \right)^{l'}} $$

    所以R100010≠0, R010010≠0.此时0 =Rj0l00010=(R100010)j0(R010010)l0≠0矛盾.因此对所有jl及任意bq, 有Rjl0001≠0, Rjl0bq0=0.特别地,Rjl0ii0=0, Rjl0000=0.因而根据式(1)得Rjl0001=1.

    进一步地,由式(14)可得

    $$ {\omega ^{2a}}\mathit{\boldsymbol{R}}_{jl0}^{a + 1,a + 1,1} = \mathit{\boldsymbol{R}}_{jl0}^{aa1}\mathit{\boldsymbol{R}}_{jl0}^{111} $$

    进而有

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}_{jl0}^{a + 1,a + 1,1} = {\omega ^{ - 2a}}\mathit{\boldsymbol{R}}_{jl0}^{aa1}\mathit{\boldsymbol{R}}_{jl0}^{111} = }\\ {{\omega ^{ - a\left( {a + 1} \right)}}{{\left( {\mathit{\boldsymbol{R}}_{jl0}^{111}} \right)}^{a + 1}}} \end{array} $$

    因此

    $$ \mathit{\boldsymbol{R}}_{jl0}^{aa1} = {\omega ^{a\left( {1 - a} \right)}}{\left( {\mathit{\boldsymbol{R}}_{jl0}^{111}} \right)^a} $$

    从而对所有i及j≠l, 有Rjl0ii1≠0,且

    $$ 1 = \mathit{\boldsymbol{R}}_{jl0}^{001} = \mathit{\boldsymbol{R}}_{jl0}^{441} = {\left( {\mathit{\boldsymbol{R}}_{jl0}^{111}} \right)^4} $$

    则存在某s=0, 1, 2, 3使得

    $$ \mathit{\boldsymbol{R}}_{jl0}^{111} = {\omega ^s} $$

    进而有

    $$ \mathit{\boldsymbol{R}}_{jl0}^{ii1} = {\omega ^{i\left( {1 - i} \right)}}{\omega ^s},s = 0,1,2,3 $$

    根据

    $$ \mathit{\boldsymbol{R}}_{jl0}^{ii1} = {\left( { - 1} \right)^{ij - il}}R_{lj0}^{ii1} $$

    最后适当调整s可得

    $$ \mathit{\boldsymbol{R}}_{jl0}^{ii1} = {\omega ^{i\left( {1 - i} \right)}}{\omega ^{\left( {sj - \left( {2 - s} \right)l} \right)i}} $$
    $$ \mathit{\boldsymbol{R}}_{lj0}^{ii1} = {\omega ^{i\left( {1 - i} \right)}}{\omega ^{\left( {sl - \left( {2 - s} \right)j} \right)i}} $$

    式中s可取0, 1, 2, 3.

    根据式(20),当ap时,可得Rap0ii1Rbb0ii1=0.因为这时Rap0ii1≠0,必有Rbb0ii1=0.

    R001ik0=0, 对所有ik.根据式(22),当ik, a=p=0, bq任意时,可得Rbq1ik0=0.再由式(17), 当bq, a, p任意时,可得Rbq0ii1Rap1ii0=0. 因为这时Rbq0ii1≠0,则必有Rap1ii0=0.所以可得对任意的ikjl, 有Rjl1ik0=0.

    根据式(23), 当ik, bq任意时,可得Rbq1ik1=0.再由式(16),当bq,可得Rbq0ii1Raa1ii1=0.

    因为这时Rbq0ii1≠0,则对所有abiRaa1ii1=0.所以对任意的ikjlRjl1ik1=0.

    另一方面,由式(14)当jl时,取ap, bq,但a+b=p+q.这种情况总是可以取到.这时等式左边为Rjl0a+b, a+b, 1≠0,而右边值为0, 矛盾, 这表明一定存在某些i0k0, 有R001i0k00≠0.此时用上面同样方法可以得到对任意ik,有R001ik0≠0,且对任意的j, Rjj0ik0=0.

    $$ \mathit{\boldsymbol{R}}_{jj1}^{ik0} = {\omega ^{j\left( {1 - j} \right)}}{\omega ^{\left( {ti - \left( {2 - t} \right)k} \right)j}} $$
    $$ \mathit{\boldsymbol{R}}_{jj1}^{ki0} = {\omega ^{j\left( {1 - j} \right)}}{\omega ^{\left( {tk - \left( {2 - t} \right)i} \right)j}} $$

    其中t=0, 1, 2, 3.

    对任意j,一定存在j=a+b=p+q且a≠p, bq.根据式(22),可得Rjj1ii0=0.再由式(21)得

    $$ {\omega ^{2a}} = \mathit{\boldsymbol{R}}_{a + 1,a + 1,1}^{ik0} = \mathit{\boldsymbol{R}}_{111}^{ik0}\mathit{\boldsymbol{R}}_{ap1}^{ik0} + {\left( { - 1} \right)^{ik}}\mathit{\boldsymbol{R}}_{111}^{ik1}\mathit{\boldsymbol{R}}_{ap1}^{ki1} $$
    $$ {\omega ^{2\left( {j - 1} \right)}}\mathit{\boldsymbol{R}}_{jj1}^{ik0} = \mathit{\boldsymbol{R}}_{111}^{ik0}\mathit{\boldsymbol{R}}_{j - 1,j - 1,1}^{ik0} + {\left( { - 1} \right)^{ik}}\mathit{\boldsymbol{R}}_{111}^{ik1}\mathit{\boldsymbol{R}}_{j - 1,j - 1,1}^{ki1} $$

    ik时得

    $$ {\omega ^{2\left( {j - 1} \right)}}\mathit{\boldsymbol{R}}_{jj1}^{ik0} = \mathit{\boldsymbol{R}}_{111}^{ik0}\mathit{\boldsymbol{R}}_{j - 1,j - 1,1}^{ik0} = {\left( {\mathit{\boldsymbol{R}}_{111}^{ik0}} \right)^j}\mathit{\boldsymbol{R}}_{001}^{ik0} $$

    ω2(j-1)Rjj1ik0=R111ik0Rj-1, j-1, 1ik0=(R111ik0)jR001ik0

    进一步地,由式(20)可得对所有j, Rjj0ii0≠0.下面计算Rjj0ii0的值.由式(12)及式(20)

    $$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{R}}_{jj0}^{a + 1,a + 1,0} = \mathit{\boldsymbol{R}}_{jj0}^{aa0}\mathit{\boldsymbol{R}}_{jj0}^{110} = }\\ {\mathit{\boldsymbol{R}}_{jj0}^{a - 1,a - 1,0}{{\left( {\mathit{\boldsymbol{R}}_{jj0}^{110}} \right)}^2} = {{\left( {\mathit{\boldsymbol{R}}_{jj0}^{110}} \right)}^{a + 1}}} \end{array} $$

    所以Rjj0ii0=(R110110)i=(R110110)ij.

    i=1, j=4时, 有

    $$ \mathit{\boldsymbol{R}}_{440}^{110} = \mathit{\boldsymbol{R}}_{000}^{110} = {\left( {\mathit{\boldsymbol{R}}_{110}^{110}} \right)^4} = 1 $$

    R110110=ωt,其中t′=0, 1, 2, 3.所以Rjj0ii0=ωtij.

    最后考虑Rjl1ik1的值.根据式(15)可知, ${\mathit{\boldsymbol{R}}}_{jj1}^{a{\rm{ }} + b,a + b,1} = 0$ 从而对所有Rjj1ii1=0.当jl, apbq,同时a+b=p+q时,由式(14)可知, 0≠Rjl0a+b, a+b, 1=Rjl1ap1Rlj1bq1, 所以Rjl1ap1≠0.

    然而总可以取到a+bp+q, 同时ap, bq (因为abpq均∈$\mathbb{Z}$4总可以取到这种情形.例如取a=1, b=0, p=2, q=1).此时,ap, bq, a+bp+q.

    此时由式(13)知

    $$ 0 \ne \mathit{\boldsymbol{R}}_{jj1}^{a + b,p + q,0} = \mathit{\boldsymbol{R}}_{jj1}^{ap0}\mathit{\boldsymbol{R}}_{jj0}^{bq0} + \mathit{\boldsymbol{R}}_{jj0}^{ap0}\mathit{\boldsymbol{R}}_{jj1}^{bq0} = 0 $$

    这是一个矛盾.

    实际上由式(21)也能得出矛盾,从而此种情形不存在H32的泛R-矩阵.

    情形三:

    若对某些ikR001ik0≠0,同理可得相应结论.

    综上所述,Hopf代数H32只有式(24)形式的泛R-矩阵,定理得证.

  • [1]

    DRINFELD V G. Quantum groups[C]//Proc ICM. Berkeley: AMC Providence, 1986: 798-820.

    [2]

    RADFORD D E. On the quasitriangular structures of a semisimple Hopf algebra[J]. J Algebra, 1991, 141(2):354-358. doi: 10.1016-0021-8693(91)90236-2/

    [3]

    MONTGOMERY S. Hopf algebras and their actions on rings[M]. Washington:CBMS, AMS, Providence, 1993:60-105.

    [4]

    NENCIU A. Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions[J]. Comm Algebra, 2001, 29(8):3419-3432. doi: 10.1081/AGB-100105029

    [5]

    KAC G I, PALJUTKIN V G. Finite ring groups[J]. Trudy Moskov Mat Obš AčG2, 1966, 15:224-261. http://d.old.wanfangdata.com.cn/Periodical/sxxb-e201409007

    [6]

    MASUOKA A. Semisimple Hopf algebras of dimension 6, 8[J]. Israel J Math, 1995, 92(1/2/3):361-373. http://cn.bing.com/academic/profile?id=82ca6d97fe3ad31be0a85198851dc8e6&encoded=0&v=paper_preview&mkt=zh-cn

    [7]

    BEATTIEA M, DASCALESCUB S, GRUNENFELDERC L. Constructing pointed Hopf algebras by Ore-extensions[J]. J Algebra, 2000, 225(2):743-770. doi: 10.1006/jabr.1999.8148

    [8]

    PANOV A N. Ore extensions of Hopf algebras[J]. Math Notes, 2003, 74(3/4):401-410. doi: 10.1023/A:1026115004357

    [9]

    WANG Z H, LI L B. Ore extensions of quasitriangular Hopf algebras[J]. Acta Math Sci, 2009, 29(6):1572-1579. http://cn.bing.com/academic/profile?id=0be34aba7167f91b8c9e933ce1809c68&encoded=0&v=paper_preview&mkt=zh-cn

    [10]

    WANG D G, LU D W. Ore extensions of Hopf group coalgebras[J]. J Korean Math Soc, 2014, 51(2):325-344. doi: 10.4134/JKMS.2014.51.2.325

    [11]

    LU D W, WANG D G. Ore extensions of quasitriangular Hopf group coalgebras[J]. J Algebra Appl, 2014, 13(6):1450016. doi: 10.1142/S0219498814500169

    [12]

    YOU L, WANG Z, CHEN H. Generalized Hopf Ore extensions[J]. J Algebra, 2018, 508(1):390-417. http://d.old.wanfangdata.com.cn/Periodical/hzsfxyxb201504016

    [13]

    PANSERA D. A note on a paper by Cuadra, Etingof and Walton[J]. Comm Algebra, 2017, 45(8):3402-3409. doi: 10.1080/00927872.2016.1236933

    [14]

    LI F. Weak Hopf algebras and new solutions of the quantum Yang-Baxter equation[J]. J Algebra, 1998, 208(1):72-100. http://cn.bing.com/academic/profile?id=c1e03287eeb02444649d33abd6459fbf&encoded=0&v=paper_preview&mkt=zh-cn

    [15] 苏冬, 杨士林. Δ-结合代数的Green环[J].北京工业大学学报, 2017, 43(8):1275-1282. http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201708021

    SU D, YANG S L. Green rings of the Δ-associated algebra[J]. Journal of Beijing University of Techology, 2017, 43(8):1275-1282. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/bjgydxxb201708021

    [16] 程诚, 杨士林. An-型非标准量子群的弱Hopf代数结构[J].北京工业大学学报, 2017, 43(10):1604-1608. doi: 10.11936/bjutxb2016090035

    CHENG C, YANG S L. Weak Hopf algebras corresponding to the An-non-standard deformation[J]. Journal of Beijing University of Techology, 2017, 43(10):1604-1608. (in Chinese) doi: 10.11936/bjutxb2016090035

    [17]

    SWEEDLER M E. Hopf algebras[M]. New York:Benjamin, 1969:3-27.

    [18]

    WAKUI M. Polynomial invariants for a semisimple and cosemisimple Hopf algebra of finite dimension[J]. J Pure and Appl Algebra, 2010, 214(6):701-728. doi: 10.1016/j.jpaa.2009.07.016

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  172
  • HTML全文浏览量:  3
  • PDF下载量:  52
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-09-04
  • 网络出版日期:  2022-08-03
  • 发布日期:  2019-08-09
  • 刊出日期:  2019-08-14

目录

/

返回文章
返回