基于CNN-LSTM模型的短文本情感分类

    Short Text Sentiment Classification Based on CNN-LSTM Model

    • 摘要: 为了有效获取短文本评论隐含的语义信息进行情感倾向性识别,提出一种基于CNN-LSTM模型的短文本情感分类方法.利用卷积神经网络(convolutional neural network,CNN)模型设置不同大小的卷积窗口,提取短文本的语义特征.引入长短时记忆(long short-term memory,LSTM)神经网络模型对短文本的情感倾向进行预测.在3种不同的中英文短文本评论数据集上进行验证取得较好的性能,其中,在NLPCC评测数据集上,正、负向情感识别的F1值分别达到0.768 3和0.772 4(优于NLPCC评测的最优结果).相较于传统的机器学习分类模型,t-test检验结果表明性能提升显著.

       

      Abstract: A CNN-LSTM model-based short text sentiment classification method was proposed to effectively obtain the implicit semantic information of short text reviews. The convolutional neural network (CNN) model was used to automatically learn the semantic feature by setting different sizes of convolution windows. The long short-term memory (LSTM) neural network model was used to predict the sentimental label of the short text. The performance of the model was evaluated on three different short text review data sets. The F1 value of the positive and negative data in NLPCC is 0.768 3 and 0.772 4, respectively (better than the best NLPCC evaluation result). Compared with the traditional machine learning classification model, t-test results show that the performance is improved significantly.

       

    /

    返回文章
    返回