初始间断为2个同心圆周的二维Burgers方程的解

    Solution to a 2-Dimensional Burgers Equation With Initial Discontinuity on Two Concentric Circles

    • 摘要: 得到了一类具有2个不同半径的同心圆周线初始间断的二维Burgers方程的激波与疏散波及其相互作用的整体结构.在初始值是2个不同的常数状态假设下, 利用HH')条件及R-H条件, 分别构造出当0 \leqslant t \leqslant \frac2\sqrt 2 u_ + - u_ - ,\frac2\sqrt 2 u_ + - u_ - < t \leqslant \frac4u_ + - u_ - ,\frac4u_ + - u_ - < t \leqslant \frac8u_ + - u_ - ,\frac8u_ + - u_ - < t \leqslant \frac2\left( \sqrt 26 - 7\sqrt 2 - \sqrt 10 - 7\sqrt 2 \right)u_ + - u_ - ,\frac2\left( \sqrt 26 - 7\sqrt 2 - \sqrt 10 - 7\sqrt 2 \right)u_ + - u_ - < t \leqslant \frac6\sqrt 2 + 8u_ + - u_ - 和t > \frac6\sqrt 2 + 8u_ + - u_ - 时的解, 并发现一些新的现象.最后给出整体解的结构, 当时间"t"固定时, 解具有特殊的形状.

       

      Abstract: The shock wave, rarefaction wave and their global structure of interactions to 2-D Burgers equation with initial discontinuity were obtained based on two concentric circles with different radii. When the initial data just contained two different constant states, through condition H(H') and condition R-H, solutions were given respectively when 0 \leqslant t \leqslant \frac2\sqrt 2 u_ + - u_ - ,\frac2\sqrt 2 u_ + - u_ - < t \leqslant \frac4u_ + - u_ - ,\frac4u_ + - u_ - < t \leqslant \frac8u_ + - u_ - ,\frac8u_ + - u_ - < t \leqslant \frac2\left( \sqrt 26 - 7\sqrt 2 - \sqrt 10 - 7\sqrt 2 \right)u_ + - u_ - ,\frac2\left( \sqrt 26 - 7\sqrt 2 - \sqrt 10 - 7\sqrt 2 \right)u_ + - u_ - < t \leqslant \frac6\sqrt 2 + 8u_ + - u_ - and t > \frac6\sqrt 2 + 8u_ + - u_ - and some new phenomena were discovered. Finally, the structure of global solution which had the special structure for any fixed time "t" was presented.

       

    /

    返回文章
    返回