基于深度自动编码器与 Q学习的移动机器人路径规划方法

    Mobile Robot Path Planning Based on Deep Auto-encoder and Q-learning

    • 摘要: 针对移动机器人在静态未知环境中的路径规划问题,提出了一种将深度自动编码器(deep auto-encoder)与 Q学习算法相结合的路径规划方法,即DAE- Q路径规划方法. 利用深度自动编码器处理原始图像数据可得到移动机器人所处环境的特征信息; Q学习算法根据环境信息选择机器人要执行的动作,机器人移动到新的位置,改变其所处环境. 机器人通过与环境的交互,实现自主学习. 深度自动编码器与 Q学习算法相结合,使系统可以处理原始图像数据并自主提取图像特征,提高了系统的自主性;同时,采用改进后的 Q学习算法提高了系统收敛速度,缩短了学习时间. 仿真实验验证了此方法的有效性.

       

      Abstract: To solve the path planning problem of mobile robot in static unknown environment, a new path planning method was proposed which combined the deep auto-encoder with the Q-learning algorithm, namely the DAE- Q path planning method. The deep auto-encoder processed the raw image data to get the feature information of the environment. The Q-learning algorithm chose an action according to the environmental information and the robot moved to a new position, changing the surrounding environment of the mobile robot. The robot realized autonomous learning through the interaction with the environment. The system processed raw image data and extracted the image feature autonomously by combining the deep auto-encoder and the Q-learning algorithm, and the autonomy of the system was improved. In addition, an improved Q-learning algorithm to improve the system’s convergence speed and shorten the learning time was utilized. Experimental evaluation validates the effectiveness of the method.

       

    /

    返回文章
    返回