量子群UqC3)及其不可约模的Gröbner-Shirshov基

    Gröbner-Shirshov Basis of Quantum Group Uq(C3) and Its Irreducible Modules

    • 摘要: 为了研究量子群Uq(C3)及其有限维不可约模的Gröbner-Shirshov基,基于赋值图C3的Auslander-Reiten理论和表示的Gröbner-Shirshov基理论,运用Ringel-Hall代数方法,构造了量子群Uq(C3)的Gröbner-Shirshov基,进而用双自由模及钻石-合成引理,给出量子群Uq(C3)的有限维不可约模的Gröbner-Shirshov基.

       

      Abstract: Based on Auslander-Reiten theory of valued graph C3 and Gröbner-Shirshov bases for representation theory,First by using the Ringel-Hall algebra approach,a Gröbner-Shirshov basis of quantum group Uq(C3) was constructed. Then, a Gröbner-Shirshov basis of finite dimensional irreducible modules of Uq(C3) was given by using double free module and composition lemma.

       

    /

    返回文章
    返回