Labeling and Repairing the Defects of Chemically Reduced Graphene Oxide Using UV-induced Ag Nanoparticles
-
摘要: 为了标记化学法制备石墨烯时引入的缺陷,采用紫外辐照的方法,利用Ag颗粒与含氧官能团之间的相互作用实现了对缺陷的定量标记.结果表明该方法能提供石墨烯表面缺陷的数量和分布信息.另外Ag纳米颗粒对石墨烯缺陷有修复作用,有利于提高石墨烯的导电能力.Abstract: Ultraviolet(UV) irradiation method was introduced to label the defects of graphene via the interaction between the Ag nanoparticles and oxygen-containing functional groups.Resultsshow that Labeling Ag nanoparticles can provide information about the density and locations of the defects and offere new possibilities for preparation of Ag nanoparticles modified graphene in a simple way. Furthermore,the conductivity of the graphene can be improved by Ag nanoparticles.
-
-
[1] WANG X, YOU H, LIU F, et al. Large-scale synthesis of few-layered graphene using CVD[J]. Chemical Vapor Deposition, 2009, 15(1/2/3): 53-56.
[2] CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat Nanotechnol, 2009, 4: 30-33.
[3] CUI A L, FENG G X, ZHAO Y F, et al. Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water[J]. Electrochemistry Communications, 2009, 11 (2): 409-412.
[4] DING Y H, ZHANG P, REN H M, et al. Preparation of graphene/TiO2 anode materials for lithium-ion batteries by a novel precipitation method[J]. Materials Research Bulletin, 2011, 46(12): 2403-2407.
[5] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010, 39(1): 228-240.
[6] LOH K P, BAO Q, ANG P K, YANG J. The chemistry of graphene[J]. J Mater Chem, 2010, 20 (12): 2277-2289.
[7] 徐秀娟, 秦金贵, 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12): 2559-2567. XU Xiu-juan, QIN Jin-gui, LI Zhen. Research advances of graphene[J]. Progress in Chemistry, 2009, 21(12): 2559-2567. (in Chinese) [8] GAO X, JANG J, NAGASE S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2009, 114(2): 832-842.
[9] SHIN H J, KIM K K, BENAYAD A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Adv Funct Mater, 2009, 19(12): 1987-1992.
[10] FERNANDEZ-MERINO M J, GUARDIA L, PAREDES J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6426-6432.
[11] CHEN D, LI L, GUO L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid[J]. Nanotechnology, 2011, 22 (32): 325601.
[12] ZHOU T, CHEN F, LIU K, et al. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite[J]. Nanotechnology, 2010, 21 (4): 045704.
[13] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4): 1146-1152.
[14] GUARDIA L, VILLAR-RODIL S, PAREDES J I, et al. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation[J]. Carbon, 2012, 50(3): 1014-1024.
[15] WANG Z, ZHOU X, ZHANG J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase [J]. The Journal of Physical Chemistry C, 2009, 113 (32): 14071-14075.
[16] GUO H L, WANG X F, QIAN Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9): 2653-2659.
[17] DING Y, JIANG Y, XU F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method[J]. Electrochemistry Communications, 2010, 12(1): 10-13.
[18] ZHU C, GUO S, FANG Y, DONG S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets[J]. ACS Nano, 2010, 4 (4): 2429-2437.
[19] BAGRI A, MATTEVI C, ACIK M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nature Chemistry, 2010, 2: 581-587.
[20] SON W K, YOUK J H, LEE T S, et al. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles[J]. Macromolecular Rapid Communications, 2004, 25(18): 1632-1637.
[21] SON W K, YOUK J H, PARK W H. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles [J]. Carbohydrate Polymers, 2006, 65(4): 430-434.
[22] LI Z, HUANG H, SHANG T, et al. Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres[J]. Nanotechnology, 2006, 17(3): 917.
[23] 侯丽, 徐国财, 汪厚安, 等. 紫外光辐照双原位同步合成纳米Ag/PVP复合物的结构特征[J]. 高分子材料科学与工程, 2009, 25(12): 66-68. HOU Li, XU Guo-cai, WANG Hou-an, et al. Constructure characterization of nano-silver/PVP composites synthesized Bi-in Situ UV irradiation[J]. Polymer Materials Science and Engineering, 2009, 25 (12): 66-68. (in Chinese) [24] PASRICHA R, GUPTA S, SRIVASTAVA A K. A facile and novel synthesis of Ag-graphene-based nanocomposites [J]. Small, 2009, 5(20): 2253.
[25] ZHANG Z, XU F, YANG W, et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J]. Chemical Communications, 2011, 47(22): 6440-6442.
[26] LU G, MAO S, PARK S, et al. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals [J]. Nano Research, 2009, 2(3): 192-200.
[27] JASUJA K, BERRY V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement [J]. ACS Nano, 2009, 3(8): 2358-2366.
-
期刊类型引用(5)
1. 薛义鸣,赵伟,贺志宝,王迎春,赵登云,陈康. 熔盐储罐底部摩擦系数对上部结构的影响研究. 西北水电. 2025(01): 100-107 . 百度学术
2. 姚亚军. 塔式太阳能光热发电熔盐罐设计探讨. 石油和化工设备. 2024(10): 117-120 . 百度学术
3. 薛义鸣,贺志宝,赵伟,王迎春,赵登云,陈康. 光热电站熔盐储罐结构的稳定与强度分析. 西北水电. 2024(06): 126-135 . 百度学术
4. 刘洪志. 温度交变影响下储罐壁板力学-电化学性能研究. 石油和化工设备. 2023(02): 9-11 . 百度学术
5. 杜保存,黄丽娟,雷勇刚,宋翀芳,王飞. 填充床熔盐蓄热器的动态温度与应力特性. 储能科学与技术. 2022(07): 2141-2150 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 0
- HTML全文浏览量: 0
- PDF下载量: 0
- 被引次数: 9