• 综合性科技类中文核心期刊
    • 中国科技论文统计源期刊
    • 中国科学引文数据库来源期刊
    • 中国学术期刊文摘数据库(核心版)来源期刊
    • 中国学术期刊综合评价数据库来源期刊

紫外辐照法制备Ag纳米颗粒用于石墨烯表面缺陷的标记与修复

丁燕怀, 郭江江

丁燕怀, 郭江江. 紫外辐照法制备Ag纳米颗粒用于石墨烯表面缺陷的标记与修复[J]. 北京工业大学学报, 2015, 41(1): 149-152. DOI: 10.11936/bjutxb2013120022
引用本文: 丁燕怀, 郭江江. 紫外辐照法制备Ag纳米颗粒用于石墨烯表面缺陷的标记与修复[J]. 北京工业大学学报, 2015, 41(1): 149-152. DOI: 10.11936/bjutxb2013120022
DING Yan-huai, GUO Jiang-jiang. Labeling and Repairing the Defects of Chemically Reduced Graphene Oxide Using UV-induced Ag Nanoparticles[J]. Journal of Beijing University of Technology, 2015, 41(1): 149-152. DOI: 10.11936/bjutxb2013120022
Citation: DING Yan-huai, GUO Jiang-jiang. Labeling and Repairing the Defects of Chemically Reduced Graphene Oxide Using UV-induced Ag Nanoparticles[J]. Journal of Beijing University of Technology, 2015, 41(1): 149-152. DOI: 10.11936/bjutxb2013120022

紫外辐照法制备Ag纳米颗粒用于石墨烯表面缺陷的标记与修复

基金项目: 

国家自然科学基金资助项目(51002128)

博士后基金资助项目(2013T60772)

详细信息
    作者简介:

    丁燕怀(1980—),男,副教授,主要从事纳米材料方面的研究,E-mail:yhding@xtu.edu.cn

  • 中图分类号: TQ127.11

Labeling and Repairing the Defects of Chemically Reduced Graphene Oxide Using UV-induced Ag Nanoparticles

  • 摘要: 为了标记化学法制备石墨烯时引入的缺陷,采用紫外辐照的方法,利用Ag颗粒与含氧官能团之间的相互作用实现了对缺陷的定量标记.结果表明该方法能提供石墨烯表面缺陷的数量和分布信息.另外Ag纳米颗粒对石墨烯缺陷有修复作用,有利于提高石墨烯的导电能力.
    Abstract: Ultraviolet(UV) irradiation method was introduced to label the defects of graphene via the interaction between the Ag nanoparticles and oxygen-containing functional groups.Resultsshow that Labeling Ag nanoparticles can provide information about the density and locations of the defects and offere new possibilities for preparation of Ag nanoparticles modified graphene in a simple way. Furthermore,the conductivity of the graphene can be improved by Ag nanoparticles.
  • [1]

    WANG X, YOU H, LIU F, et al. Large-scale synthesis of few-layered graphene using CVD[J]. Chemical Vapor Deposition, 2009, 15(1/2/3): 53-56.

    [2]

    CHOUCAIR M, THORDARSON P, STRIDE J A. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat Nanotechnol, 2009, 4: 30-33.

    [3]

    CUI A L, FENG G X, ZHAO Y F, et al. Synthesis and separation of mellitic acid and graphite oxide colloid through electrochemical oxidation of graphite in deionized water[J]. Electrochemistry Communications, 2009, 11 (2): 409-412.

    [4]

    DING Y H, ZHANG P, REN H M, et al. Preparation of graphene/TiO2 anode materials for lithium-ion batteries by a novel precipitation method[J]. Materials Research Bulletin, 2011, 46(12): 2403-2407.

    [5]

    DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2010, 39(1): 228-240.

    [6]

    LOH K P, BAO Q, ANG P K, YANG J. The chemistry of graphene[J]. J Mater Chem, 2010, 20 (12): 2277-2289.

    [7] 徐秀娟, 秦金贵, 李振. 石墨烯研究进展[J]. 化学进展, 2009, 21(12): 2559-2567. XU Xiu-juan, QIN Jin-gui, LI Zhen. Research advances of graphene[J]. Progress in Chemistry, 2009, 21(12): 2559-2567. (in Chinese)
    [8]

    GAO X, JANG J, NAGASE S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design[J]. The Journal of Physical Chemistry C, 2009, 114(2): 832-842.

    [9]

    SHIN H J, KIM K K, BENAYAD A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Adv Funct Mater, 2009, 19(12): 1987-1992.

    [10]

    FERNANDEZ-MERINO M J, GUARDIA L, PAREDES J I, et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C, 2010, 114(14): 6426-6432.

    [11]

    CHEN D, LI L, GUO L. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid[J]. Nanotechnology, 2011, 22 (32): 325601.

    [12]

    ZHOU T, CHEN F, LIU K, et al. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite[J]. Nanotechnology, 2010, 21 (4): 045704.

    [13]

    CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4): 1146-1152.

    [14]

    GUARDIA L, VILLAR-RODIL S, PAREDES J I, et al. UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation[J]. Carbon, 2012, 50(3): 1014-1024.

    [15]

    WANG Z, ZHOU X, ZHANG J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase [J]. The Journal of Physical Chemistry C, 2009, 113 (32): 14071-14075.

    [16]

    GUO H L, WANG X F, QIAN Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9): 2653-2659.

    [17]

    DING Y, JIANG Y, XU F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method[J]. Electrochemistry Communications, 2010, 12(1): 10-13.

    [18]

    ZHU C, GUO S, FANG Y, DONG S. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets[J]. ACS Nano, 2010, 4 (4): 2429-2437.

    [19]

    BAGRI A, MATTEVI C, ACIK M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nature Chemistry, 2010, 2: 581-587.

    [20]

    SON W K, YOUK J H, LEE T S, et al. Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles[J]. Macromolecular Rapid Communications, 2004, 25(18): 1632-1637.

    [21]

    SON W K, YOUK J H, PARK W H. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles [J]. Carbohydrate Polymers, 2006, 65(4): 430-434.

    [22]

    LI Z, HUANG H, SHANG T, et al. Facile synthesis of single-crystal and controllable sized silver nanoparticles on the surfaces of polyacrylonitrile nanofibres[J]. Nanotechnology, 2006, 17(3): 917.

    [23] 侯丽, 徐国财, 汪厚安, 等. 紫外光辐照双原位同步合成纳米Ag/PVP复合物的结构特征[J]. 高分子材料科学与工程, 2009, 25(12): 66-68. HOU Li, XU Guo-cai, WANG Hou-an, et al. Constructure characterization of nano-silver/PVP composites synthesized Bi-in Situ UV irradiation[J]. Polymer Materials Science and Engineering, 2009, 25 (12): 66-68. (in Chinese)
    [24]

    PASRICHA R, GUPTA S, SRIVASTAVA A K. A facile and novel synthesis of Ag-graphene-based nanocomposites [J]. Small, 2009, 5(20): 2253.

    [25]

    ZHANG Z, XU F, YANG W, et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering[J]. Chemical Communications, 2011, 47(22): 6440-6442.

    [26]

    LU G, MAO S, PARK S, et al. Facile, noncovalent decoration of graphene oxide sheets with nanocrystals [J]. Nano Research, 2009, 2(3): 192-200.

    [27]

    JASUJA K, BERRY V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: electrical property tailoring and Raman enhancement [J]. ACS Nano, 2009, 3(8): 2358-2366.

  • 期刊类型引用(5)

    1. 薛义鸣,赵伟,贺志宝,王迎春,赵登云,陈康. 熔盐储罐底部摩擦系数对上部结构的影响研究. 西北水电. 2025(01): 100-107 . 百度学术
    2. 姚亚军. 塔式太阳能光热发电熔盐罐设计探讨. 石油和化工设备. 2024(10): 117-120 . 百度学术
    3. 薛义鸣,贺志宝,赵伟,王迎春,赵登云,陈康. 光热电站熔盐储罐结构的稳定与强度分析. 西北水电. 2024(06): 126-135 . 百度学术
    4. 刘洪志. 温度交变影响下储罐壁板力学-电化学性能研究. 石油和化工设备. 2023(02): 9-11 . 百度学术
    5. 杜保存,黄丽娟,雷勇刚,宋翀芳,王飞. 填充床熔盐蓄热器的动态温度与应力特性. 储能科学与技术. 2022(07): 2141-2150 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 9
出版历程
  • 收稿日期:  2013-12-10
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回