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Pressure Vessel Strength Analysis
as Conjugation of Cylindrical and Spherical Shells

Ju.S.Stepanov V.A.Gordon

( Oryol State Technical University, Russia )

Abstract The present investigation is dedicated to the analysis of the strainly—deformed state of the shell
conjugation as a spherical band with two cylindrical shells, loaded with the umiform one simulates part of
the hydraulic pump casing. The investigations method is analytical, the area of use the results gained—design

computations.
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This paper is the first amongst those, prepared by the authors for publishing and dedicated to
the analysis of the strainly—deformed state of power parts in pressurized electropumps: casing, flanges.,
stator sleeves etc, dimensioning of the fixtures continuous strength.

The aim of the explortions performed consists in the elaboration of the analytical methods of
testing the power parts strength of pressurized pumps. the results of which can serve as the argument
and basis for a number of design solutions, aimed to the reduction of the material consumption and
production costs.

1 Model description

A single—stage pressurized pump represents a complex axis—symmetrical structure, where the
computation model of the power unit of which can serve the conjugation of casing 1 —of the
cylindrical shell, of the front II and the real Il bottoms in the form of spherical bands and of the
suction IV and pressure V branch connection pipes with flanges(Fig.1). As a computation loading we
assume the permanent operative pressure p.

The analysis of the known results and experimental data show, that the maximum equivalent
tensions increase in the spherical area II of the assembly. !

Now consider the jointing area of the cylindrical shell I (radius R, and wall thickness ¢ ) and
the spherical bottom I (radius R, and wall thickness J,). To the conjugation point of the spherical

R
area II with the cylindrical one I corresponds the angle 8 (sinf, = Fl), and to the conjugation
) :

R,

point of spherical area II with the suction branch pipe IV corresponds the angle 6  (sinf, = ;?—)

2

(Fig.2).
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Fig.1 The computation model Fig.2 The conjugation part

I 16,

We’ 1l introduce designations: index «1» above means, that the corresponding value regards the
cylindrical one, index €0%» below relates to the values of the momentless tension state, and index «k»
regards the values of the edge effect. We' 1l
consider the branch pipe IV to be absolutely MD ND M) L 5
rigid. M‘Gﬁ """ o )

Mentally we’ 11 divide both shells and their (:
effect upon each other replace with in known

forces and moments on the edges(Fig.3). R,
And all the values of the moment tension
state in the moment tension state in the joint _.-.J._._._._._.b__._.o._.00_._._._._. 0_._._,_.-._._._._~_.J._.}_
area of shell we’ 1l express through wy Fig3 Sizes and internal force
displacement in the direction of the normale to
the middle surface(w{'’= — u{’), haning put them down in the form
w,(s)=e P (Ccosfs+ Cgsinfs) (1)
wheres: s are coordinate (s = R,0); f—attenuation coefficient.

The function (2, 3) is the solution for the edge effect of the equation of axissymmetrical shell
bending

4

w, .
i + 48w, =0
For the cylindrical shell
wi') = e % (A cosBx+ Bsing, x) (2)
For the spherical shell
w =e %[ 4 cosB,(8,-0)+ B,sinB,(8,-0)] (3)
3(1-4%) ( s,
where = ——==, B, = |3(1-4) ()
ﬁl (Rldl )2 ﬂ2 ﬂ R2 )
u— Poisson’ s ratio for the shell material.

The moments and cross— cutting forces one determines in the following way'?!
2

w
M,= —-D dsz" = 2D %~ ( C,cos Bs — C,sinfs )
M, =uM,
‘w

Q,=-D ds3k= —2DB% P [ C (cosBs—sinfs) + C,(sinfs + cos fs) ] (4)

N, = Q,cotf

_ _Ed 4, .
N, = “ R ¢ (Ccos Bs + C,sin fs) (5)

2
where: M,, M ——meridional and tangentional bending moments; Q,,

cross— cutting force; N,——
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3
diaphragm force; D = T (f’é R linear cylindrical shell rigiditys E——Youmg’s modulus.
- u

Instead of force N, an @, on the shell edge it is more convenient to consider the vertical 0,

and the horizontal Q, components, determined with following relations
0, = N,sinf — Q,cos 0 = N_sinf + N _sinf — Q,cos 0
Q,= N, cos0 + Q,sinf = N _cosf + N _cosf + Q,sinf
where from, taking into account (5), we’ll receive

0 = NcosG+—g-— Q N ,sin6 (6)

The rotation angle of the meridian « displacement components #, and u, one determines in the
following way
dw dw,

1
zht )% (7)
radius of the meridian arc.

where ds= — R d6, R
The radial displacement of the parallel circle radius
u, = ucos — wsind — w,sin @ (8)
and axial displacement
u, = usinb + wcos 6 + w, cos 6
The kinematic conditions of the conjugation have a view

Zu(”—O za

i=1

where u!”

radial displacement (i = 1, 2); a'” rotation angle of both conjugated shells, that is

1) 1y — ,,(2) (2)
U, +urk =u, +urk (9)
a(l)= _ai2)

k

Static conditions of the conjugation for that case have a view

MY = M2, Q(l) Q(r(z)) Q(Z) (10)
In the assumed designations the momentless solution on the edge at x = 0 will have a view'”
2-u
ul) = — pR, al=0

M) =0; Q‘,(')) =0
and for spherical shell at 8 = 6,

(2) _

“"_2&5

u

(2) _
s e, =0

(12)

1
MP=0; Q0= —%pchoseo; N.o=35PR,

Using the relations (8). (10)~(12) for cylindrical shell in the joint cross—section at x = 0 we’ll

have
(1)
k
(l)_(w(l))x O—Al, a(l)_ dx )X=o= _ﬂl(Al_B)
dzw(l)

M) =D(—— 2 )0 = —2D,fB, (13)

d3w( Y]

0\ = Q0= Dy (—35= )0 = 2D,B) (4, + B))
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and for spherical shell at § = 6,

ul? = (w¥sin0),_ o, = A,Sin6,

dw? B
a\P = (== Ypop = — = (4,- B)
k dee =8, R2 2 2
d’wi® 2 (14)
M2 = D, (o5 * )., = —2D,—= B
;dez 0=0, 2R§ 2
D, dw® 2D, B

(4,+ B,)

2
0 = Sne, sin6), (R3d03) °=6 " Rlsin6,
The positive directions of forces and moments, acting in the jointing area, are shown in fig.3.
Substituting the dependences (13) and (14) into the conjugation conditions (9) and (10) and
taking into account the formulae for the momentless state (11) and (12), we’ll receive the system of

four algebraic equations for four constants of integration 4, B, A, and B,:

-

£ "M p2 —HU
2E6 PRI+ A4, 283, ssinf, + A ,sinf,
B
(A, —B)= -7 (4,~B,)
2
1 (15)
2 'BZ 2
2Df1B, = 2D, (21 )5,
2
1 2D, B,
2DB (A, +B) = —Epchosﬂo— o, (R )’ (A4, + B,)

Having, solved the equations system (15) we determine the tension in the shells in the jointing

area
N, 6Mm
0’,,,"—0’0+(7‘=3‘+_ 52
N M (16)
t 6 t
0,-—0‘0+0,k=5+__‘_2

2 Numerical Results

The numerical computations were performed for the following constant values of shells parameters
u=03 E=2x10°MPa, R, =137cm, 6, =6,=07cm, p=5MPa
and some values of the radius of the spherical area R, = 30, 33 and 35cm.
The computation results are shown in Tab.yl.

Table 1
R,/cm Bi/cm™! B PN sin 6, cos B, By/cm™ Ommax /| MPa
30 0.415 0.196 27°10 0.167 0.986 ~4.85 139
33 0.415 0.186 22°25 0.412 0.924 —6.90 152
35 0.415 0.182 23° 0.391 0.900 —7.10‘ 154

In such a way, the increase of the radius of the casing spherical area at the other constant
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parameters brings to the growth of meridional tensions in the dangerous cross- section (in tl
conjugation area of the spherical and cylindrical parts).

The corresponding tensions in the conjugation area of the spherical part with the suction branch
pipe (at 6, = 9°) considerably lower. For instance, at R, =30cm, o, . (6,)= 111 MPa

The maximum stretching tensions increase on the inner surface in the conjugation area of the
spherical part with the cylindrical one, and the maximum compressing tensions— on the outer surface
in the conjugation area of the spherical part with the suction branch pipe.

The maximum tensions do not exceed the yield limit of the material (o, = 200 MPa), that is to
say, the strength of the given casing is secured.

3 Conclusion

In such a way, the problem of the reliability estimation (safety factor—margin) of the power parts
of the pump as a pressure vessel at the assigned structure dimensions, mechanic characteristics of the
material and known loadings (at the effective pressure or numerically) , using, for instance, method
of finite elements.

The choice of this of that technique depends upon the project elaboration stage, and also upon
technical and personnel properties of the design department.

So, in the stage of the preliminary designing, when one works up various ways and versions
and varies a lot of parameters of different nature, it is more convenient to use the approximate
analytical techniques. On the other hand, the use of numerical techniques at testing computation,
when the structure is determined completely, its sizing, and the material is chosen.

The offered algorithm can be used both for the control- testing computations and in the stage of
the preliminary designing.

The efficiency of use of the techniques can be estimated at its inculcation in computation practice.
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