Cardinal numbers of some sets (II)

by Yang An-zhou (杨安洲) Lu Zhu-qi (卢朱祁) Chen Pei-li (陈培丽)
(The Industrial University of Peking)

In considering some basic concepts of mathematics, we obtained some elementary results:

Theorem 1. Let X be an infinite set, $E(X) = \{R : R \text{ is an equivalence relation on } X\}$. $B(X) = X^2 - E(X)$, then $|E(X)| = |B(X)| = 2^{|X|}$

Theorem 2. Given two sets X and Y, Assume that $F_1(X, Y) = \{f: f \in Y^X \land f \text{ is surjective}\}$, $F_2(X,Y) = Y^X - F_1 \text{ then} |F_1(X,Y)| = 2^{|X|} (|X|.)$ $\geqslant \aleph_0$, $2 \leqslant |Y| \leqslant |X|$)

 $\gg \aleph_0$, $2 \leqslant |Y| \leqslant |X|$), $|F_2(X, Y)| = |Y - F_1(X, Y)| = 2^{|X|} (|X| \gg \aleph_0. 3 \leqslant |Y| \leqslant |X|)$

Theorem 3. If X and Y are infinite sets, Assume that $F_s = F_s(X,Y) = \{f: f \in Y^X \land f \text{ is injective}\}$, $F_4 = Y^X - F_s$, then $|F_s| = |Y|^{|X|}$ ($|X| \leq |Y|$), $|F_4| = |Y|^{|X|}$.

Theorem 4. If X is an infinite set, Assume that

 $C = C(X) = \{ f : f \text{ is a binary operation on } X \}$

 $C_1 = \{ f : f \in C \land f \text{ is associative } \}, C_2 = C - C_1$

then $|C_1| = |C_2| = |C| = 2^{|X|}$.

Theorem 5. Let X be an infinite set, $C=C(X)=\{T:T \text{ is a topology on }X\}\subseteq P(P(X))$. Define $C_1\stackrel{\longleftarrow}{(\succeq}C)$ is a $(N \cdot H \cdot C \cdot)$ -class if $(\forall T_1 \in C_1)(\forall T_2 \in C_1)(T_1 \rightleftharpoons T_2 \rightarrow T_1 \text{ and } T_2 \text{ are not homeomorphic } \bigwedge T_1 \text{ and } T_2 \text{ are incomparable})$, $\Sigma=\{C_1:C_1 \text{ is a } (N.H.C.)-\text{class}\}$, then

 $\max\{ |C_1| : C_1 \in \Sigma \} = 2^{2|X|}, \text{ i.e. } |C_1| \text{ can reach the supremum.}$

Let X be an infinite set, $K=K(X)=\{A:A \text{ is an algebra (a field) of sets on }X\}\subseteq P(P(X))$. Define $K_1(\overset{\frown}{\succeq}K)$ is a $(N,I_*)-\text{class}$, if $(VA_1\in K_1)$ $(VA_2\in K_1)(A_1\rightleftharpoons A_2 \rightarrow A_1)$ and A_2 are not isomorphic), $\Sigma=\{K_1:K_1 \text{ is a }(N,I_*)-\text{class}\}$, then $\max\{|K_1|:K_1\in \Sigma\}=2^{2^{|X|}}$, i. e. $|K_1|$ can reach the supremum.

本文于 1982 年 5 月 10 日收到。