高 Mach 数格子 Boltzmann 模型

施文平¹, 李 静², 胡京兴², 洪 军², 俞慧丹³ (1. 浙江师范大学 数学系,浙江 金华 321004; 2. 北京工业大学 应用数理学院,北京 100022; 3. 浙江师范大学 物理系,浙江 金华 321004)

摘 要: 在简单声速可调模型的基础上,通过在演化方程中引入一个粒子吸引项,建立了高 Mach 数格子 Boltzmann模型.利用 Chapman-Enskog 渐进展开法推导相应的宏观流体力学方程. 模拟结果表明,该模型可降 低声速,将 Mach 数提高到 5 以上,且与理论值吻合.

关键词: 粒子吸引项; 高 Mach 数流动; 格子 Boltzmann 方程. 中**田分类号:** 0 351.3 文献标识码: A 文章编号: 0254-0037(2002)01-0066-04

构造高 Mach 数格子 Boltzmann 模型是一项有意义但难度比较大的工作.原有的结果^[14]或 Mach 数 不够高,或过程太复杂,效果不甚理想.最近孙成海^[5]、阎广武等^[6]各自提出了模拟高流速的格子 Boltzmann 模型,并成功地模拟激波现象,但只给出简单的一维模拟.作者通过在演化方程中引入一个粒 子吸引项,建立了一个高 Mach 数格子 Boltzman 模型.

1 高 Mach 数格子 Boltzmann 模型

用 $f_{aa}(X, t)$ 描述速度为 $c_{aa}(\sigma = c^2)$ 朝着 a 方向运动的第 σ 类粒子在时空(X, t)里的分布,离散取值的 X代表格点的位矢,离散且只取正值的 t代表时间.不失一般性,用 FHP7-bit 模型作为网格模型,是一个二 维六角网格,有 6 个速度矢量 $e_a(a = 1, \dots, 6)$ 和一个 a = 0的静止粒子.在 t时刻,引人粒子吸引项.

$$\Phi_{a} = (1 / 3) gc_{i}^{2} \left[\mathbf{e}_{a} \cdot \nabla \rho + 4 \left(\mathbf{e}_{a} \cdot \mathbf{u} \right) \left(\mathbf{e}_{a} \cdot \nabla \rho \right) + \left[\left(2gc_{i}^{2} \right) / \rho \right] \left(\mathbf{e}_{a} \cdot \nabla \rho \right)^{2} - \mathbf{u} \cdot \nabla \rho - \left[\left(gc_{i}^{2} \right) / 2\rho \right] \left(\nabla \rho \right)^{2} \right] \qquad (a = 1, \dots, 6)$$

$$\Phi_{a} = -2gc_{i}^{2} \mathbf{u} \cdot \nabla \rho - (1 / \rho) \left(gc_{i}^{2} \nabla \rho \right)^{2} \qquad (2)$$

其中:g和 c_s 分别为吸引强度调节参数和声速. 令 $f_a^*(X,t) = f_a(X,t) + \Phi_a(X,t)$. f_a 与宏观参量 $\rho \pi u 之 间满足$

$$\rho = \sum_{a} f_a \tag{3}$$

$$\rho u = \sum_{a} e_{a} f_{a} \tag{4}$$

则f;与宏观参量p和u之间的关系为

$$\sum_{a} f_{a}^{*} = \sum_{a} f_{a} + \sum_{a} \Phi_{a} = \rho$$
⁽⁵⁾

$$\sum_{a} \boldsymbol{e}_{a} \boldsymbol{f}_{a}^{*} = \sum_{a} \boldsymbol{e}_{a} \boldsymbol{f}_{a} + \sum_{a} \boldsymbol{e}_{a} \boldsymbol{\Phi}_{a} = \boldsymbol{\rho} \boldsymbol{u} + \boldsymbol{g} \boldsymbol{c}_{s}^{2} \nabla \boldsymbol{\rho} = \boldsymbol{\rho} \boldsymbol{u}^{*}$$
(6)

收稿日期: 2001-03-09.

基金项目: 国家自然科学基金资助项目(10072004);北京市自然科学基金资助项目(1982002); 北京市青年科技骨干培养基金资助项目(K10801200101).

作者简介: 施文平(1962-), 男, 讲师.

于是f。的演化方程为

$$f_a(X + e_a, t + 1) = f_a(X, t) + \Phi_a(X, t) + \Omega_a^*(X, t)$$

$$[I] \Psi_1 \Omega_a^* = -(f_a^* - f_a^{*eq}) / \tau, \ \tau \text{ (I} = -(f_a^* - f_a^{*$$

有了吸引势以后的平衡分布函数为

$$f_a^{* \text{teq}} = (\rho / 3) [c_s^2 + e_a \cdot u^* + 2(e_a \cdot u^*)^2 - (1/2)u^{*2}]$$
(8)

$$f_0^{* \, \text{eq}} = \rho \left[1 - 2c_s^2 - u^{*2} \right] \tag{9}$$

显然

$$\sum_{\alpha} \Omega_{\alpha}^{*} = 0 \qquad (\vec{w} \hat{\underline{u}} + k \vec{v} + k \vec{v}$$

$$\sum_{a} e \Omega_{a}^{*} = 0 \qquad (\vec{w} \underline{a} + \eta \underline{a} \underline{b} + \eta \underline{b} \underline{c} + \eta \underline{b} \underline{c}$$

2 Chapman-Enskog 展开

动理学的特征时空尺度是碰撞时间r和平均自由程 λ ,流体力学的特征时空尺度要比这大得多,两尺度之比e叫做 Knudsen 数($e \ll 1$).将动理学方程中的所有物理量和微分算符都按小参量e的幂次展开

$$f_a = f_a^{(0)} + \varepsilon f_a^{(1)} + 0 \left(\varepsilon^2 \right) \tag{12}$$

$$\partial_{i} = \varepsilon \partial_{i}^{(1)} + \varepsilon^{2} \partial_{i}^{(2)} + 0 (\varepsilon^{3})$$
(13)

$$\nabla = \varepsilon \nabla^{(1)} + \varepsilon^2 \nabla^{(2)} + 0 \left(\varepsilon^2 \right) \tag{14}$$

对式(7)作 Taylor 展开,略去三阶以上高次项,得粒子分布函数 f_a演化的动理方程

$$(\partial / \partial t + \boldsymbol{e}_a \cdot \nabla) f_a + (1/2) (\partial / \partial t + \boldsymbol{e}_a \cdot \nabla)^2 f_a = \Omega_a^* + \boldsymbol{\Phi}_a$$
(15)

式 (12)~(14)代人式 (15)并逐次近似展开,选 $f_a^{(0)} = f_a^{eq}$,得 ε^1 级近似 $(\partial_t^{(1)} + e_a \cdot \nabla^{(1)}) f_a^{eq} = \Omega_a^{*(1)} + \Phi_a^{(0)} = -f_a^{(1)} / \tau + \Phi_a^{(1)}$ (16) ε^2 级近似 $(\partial_t^{(2)} + e_a \cdot \nabla^{(2)}) f_a^{eq} + (\partial_t^{(1)} + e_a \cdot \nabla^{(1)}) f_a^{(1)} + (1/2) (\partial_t^{(1)} + e_a \cdot \nabla^{(1)})^2 f_a^{eq} = \Phi_a^{(2)}$ (17) f_a 的约束条件式 (3)分解为

$$\sum_{a} f_{a}^{eq} = \rho, \qquad \sum_{a} e_{a} f_{a}^{eq} = \rho u \qquad (18)$$

式(4)分解为

$$\sum_{a} f_{a}^{(1)} = 0, \qquad \sum_{a} e_{a} f_{a}^{(1)} = 0 \qquad (19)$$

式 (16)、(17)分别对 a 求和,以及乘 ea后对 a 求和,并注意到式(18)、(19),得 ε¹级方程

$$\partial_t^{(1)} \rho + \nabla^{(1)} \cdot (\rho \, \boldsymbol{u}) = 0 \tag{20}$$

$$\partial_{i}^{(1)}(\rho u_{i}) + \nabla_{i}^{(1)} \pi_{i}^{(0)} = \Phi_{a}^{(1)}$$
(21)

ε²级方程

$$\partial_{i}^{(2)}\rho + \nabla^{(2)} \cdot (\rho \boldsymbol{u}) = 0$$
⁽²²⁾

$$\partial_{i}^{(2)}(\rho u_{i}) + \nabla_{j}^{(2)} \boldsymbol{\pi}_{ij}^{(0)} + \nabla_{j}^{(1)} (\boldsymbol{\pi}_{ij}^{(1)} + \widetilde{\boldsymbol{\pi}}_{ij}^{(1)}) = \boldsymbol{\Phi}_{a}^{(2)}$$
(23)

$$\vec{x} \oplus : \boldsymbol{\pi}_{ij}^{(0)} = \sum_{a} e_{ai} e_{aj} f_{a}^{(q)}, \, \boldsymbol{\pi}_{ij}^{(1)} = \sum_{a} e_{ai} e_{aj} f_{a}^{(1)}, \, \tilde{\boldsymbol{\pi}}_{ij}^{(1)} = \frac{1}{2} \sum_{a} e_{ai} e_{aj} \left(\partial_{t}^{(1)} + e_{a} \cdot \nabla^{(1)} \right) f_{a}^{eq}. \quad \vec{x} \equiv \boldsymbol{\pi}_{ij}^{(0)} \neq 0 \ \mathcal{Y}$$

应力张量,
$$\pi_{ij}^{(1)}$$
是1级应力张量, $\hat{\pi}_{ij}^{(1)} = \int f_{aj}^{(1)} = \int g_{aj} + \tau \Phi_{aj}^{(1)} = \int g_{aj} + \tau \Phi_{aj}^{(1)} = \int f_{aj}^{(1)} = \int (1 / \tau) (\partial_{i}^{(1)} + e_a \cdot \nabla^{(1)}) f_{aj}^{eq} + \tau \Phi_{aj}^{(1)} + e_a h f_{aj} + \tau \Phi_{aj}^{(1)} + e_a h f_{aj}$

因为 $(\partial_{i}^{(1)} + e_a \cdot \nabla^{(1)}) f_{aj}^{eq} - (\partial_{i}^{(1)} + e_a \cdot \nabla^{(1)}) [(\rho / 3) (c_a^2 + e_a \cdot u)] =$

$$(0_i + e_a \cdot \nabla)_a^{-1} (0_i + e_a \cdot \nabla)_{(p_i - 1)}^{-1} (1/3)(e_a + e_a \cdot \nabla)_{(1)}^{-1} p_{i} - c_a^2 \nabla \cdot (p_i) + e_a b 奇次项)$$
(25)

$$\mathfrak{M} = \pi_{ij}^{(1)} + \tilde{\pi}_{ij}^{(1)} = (1/4) (1/2 - \tau) [\nabla_i^{(1)} (\rho u_j) + \nabla_j^{(1)} (\rho u_i) + (1 - 4c_s^2) \nabla \cdot (\rho u_i) \delta_{ij}] + 0$$

$$\tau g c_s^2 \left(u_i \nabla_j^{(1)} \rho + u_j \nabla_i^{(1)} \rho \right)$$

$$\pi_{ij}^{(0)} = \rho c_s^2 \delta_{ij} + \rho u_j u_j$$
(26.)

把式(24)~(26)代人(21),(23),得

$$\partial_{i}^{(1)}(\rho u_{i}) + \nabla_{i}^{(1)}(\rho c_{s}^{2} \delta_{ii} + \rho u_{i} u_{i}) = g c_{s}^{2} \nabla^{(1)} \rho$$
(27)

$$\partial_t(\rho u_i) + \nabla_j(\rho c_s^2) + \nabla_j(\rho u_i u_j) = g c_s^2 \nabla_i \rho + (\tau / 4 - 1 / 8) \left[\nabla_i^{(1)}(\rho u_i) + \nabla_i^{(2)}(\rho u_i) + \nabla_i^{(2)}(\rho u_i) \right] = g c_s^2 \nabla_i \rho + (\tau / 4 - 1 / 8) \left[\nabla_i^{(1)}(\rho u_i) + \nabla_i^{(2)}(\rho u_i) \right]$$

$$\nabla_{i}^{(1)}(\rho u_{i}) + (1 - 4c_{i}^{2})\nabla \cdot (\rho u) \delta_{ij} + \tau g c_{i}^{2} \nabla_{j} (u_{i} \nabla_{j}^{(1)} \rho + u_{j} \nabla_{i}^{(1)} \rho)$$

$$(28)$$

用张量Ⅱ表示式(27)右边最后一项,得到流体力学方程

与低 Mach 数流体的流体力学方程相比, 声速 c_i 变为有效声速 c_s^* 的同时多了一项 II, 这一项是非物理的, 与引人粒子吸引项的措施相伴产生,从式(27)可以看出它与密度在空间的二次变化有关.我们知道在声速 c_i 下, ($\partial \rho_i$)~ M^2 .

Mach 数 M表征流体的压缩程度, M越大, 压缩得愈严重.因此在高 Mach 数下, 流体空间的密度变化 是很大的, 这时与 LB 方法要求流体空间的物理量缓变有所不同.但是采取了降低有效声速的措施后, 从 Bernoulli 方程很容易推得 $(\partial \rho/\rho_n) \sim [(M^2 c_i^2) / (2c_i^2)] = (1/2)(1-g)M^2$.

这时流体的压缩性不仅仅由 Mach 数决定,还与g 有关.当我们取g~1时,即使高 Mach 数下,也能使流体空间的密度变化很小,适应 LB 方法.这正是我们的模型成功之处,以下的模拟结果将证实这一点.

3 模拟结果与结论

取 $\omega = 1$,则演化方程(7)变成 $f_a(X + e_{a^*}t + 1) = f_a^{*\alpha}(X,t)$.这个演化方程的优势是最大限度地 减小分布函数出负的可能性.

在一个矩形流场中流体从左到右以水平速率 u_0 流动.初始时刻每一格点有相同的密度($\rho_0 = 1$)和流速 u_0 . 让网格中心附近某一个格点的密度作周期性振动 $\rho = \rho_0 + A\sin(2\pi t/T)$.4个边界上每个格点保持 ρ_0 和 u_0 不变.以 $u_0 = 0$ 时振动传播的速率为模拟声速,用 c_s' 表示.模拟声速 c_s' 与理论有效声速 c_s' 对比结果见表 1, 2.

g	T	с,	ć,	g	Т	<i>c</i> ,	c's
0.90	426	0.164	0.164	0.95	602	0.116	0.120
0.91	450	0.156	0.156	0.96	673	0.104	0.106
0.92	476	0.147	0.147	0.97	777	0,090	0.096
0.93	510	0.138	0,137	0.98	952	0.074	0.077
0.94	550	0.127	0.127	0.99	1 350	0.052	0.056
表2	给定g不同		·速c/与理论	 有效声速c.的:	 对比 (g= 0.1	91, <i>T ≈</i> 451), <i>A</i> =0.1)
 寿?	会定。不同		 读。'与理论'	 有效声谦c的		91, T = 451), <i>A</i> = 0.1)
表2	给定g不同]a下模拟声 c,	i速a′与理论1 cs′	有效声速cs的: 	对比 (g= 0. 。	91, <i>T =</i> 45(;*), A= 0.1)
表2 <i>c</i> , 0.48	给定g不 同 0	oc下模拟声 c;	i速ci与理论7 	有效声速c.約3 	对比 (g= 0.) 。 0.1	91, T = 45 1 ; 174), A= 0.1) <u>cs'</u> 0.17 1
表2 	给定g不 同 0 0	oc.下模拟声 c, .144 .150	i連a [·] 与理论 ⁷ <u>cs</u> 0.144 0.149	有效声速c.的 <u>c.</u> 0.58 0.60	对比 (g= 0. 0.1 0.1	91, T = 451 ; 174 180), A= 0.1) c;' 0.171 0.176
表2 <u> </u>	给定g不 同 0 0 0	5.下模拟声 c、 .144 .150 .156	速 。'与理论? <u>cs'</u> 0.144 0.149 0.156	有效声速c.的 <u> c</u> 0.58 0.60 0.62	对比(g= 0. 0.1 0.1 0.1	91, <i>T ≠</i> 45(; 174 180 186), A= 0.1) <i>c,</i> ' 0.171 0.176 0.182
表2 	给定g不同 0 0 0 0 0	e、下模拟声 e、 .144 .150 .156 .162	速。'与理论 ? <u>cs'</u> 0.144 0.149 0.156 0.162	有效声速c.約3 <u> </u>	对比(g= 0. c 0.1 0.1 0. 0.	91, <i>T =</i> 451 ; 174 180 186 192), <i>A</i>= 0.1) <i>c</i> _s ' 0.171 0.176 0.182 0.189

表1 给定c,不同g下模拟声速c,与理论有效声速c,的对比(c=0.52、A=0.1)

 $u_0 \neq 0$ 时,将 $M' = u_0 / c_s'$ 定义为模拟 Mach 数. 在参数 $c_s = 0.52$, g = 0.99, T = 1.350, A = 0.1下,改 变来流速率,得到各种 Mach 数下的 Mach 锥(见图1). Mach 数的理论值用 $M^* = 1 / \sin\theta$ 来定义,其中 θ

m

M' = 2.16

M' = 3.23图1 M' 取不同值时Mach锥图

粒子间的粒子吸引项来软化声速,建立模拟高 Mach 数下可压缩流动的格子 Boltzmann 模型, 有效地提 高了 Mach 数, 虽然表 1、表 2 显示模拟降低声速值 与理论预期相吻合,该模型已经能把 Mach 数提高 到5以上,但原则上说,让g进一步趋近于1, Mach 数还可以进一步提高。该模型简单,易操作,而且

作者在简单声速可调模型的基础上,通过引人

R 3 T		ㅋм 씨	L (C=0.32, g=0.39, A=0.1)				
ио	M	M	u ₀	M'	M		
0.08	1.44	1.42	0.22	3.96	4.10		
0.12	2.16	2.20	0.24	4.32	4.35		
0.16	2,88	2.89	0.26	4.68	4.65		
0.20	3,60	3.63	0.28	5.03	5.00		

物理图像清晰,有一定的应用价值、作者将利用该模型来模拟一些有意义的高 Mach 数流动。

参考文献:

- [1] ALEXANDER F J, CHEN H, CHEN S, et al. Lattice Boltzmann model for compressible fluids[J]. Phys Rev A, 1992, 46: 1967-1975.
- [2] CHEN S, CHEN H, DOOLEN G D, et al. Immiscible cellur-automaton fluids[J]. Physica, 1991, D47: 979-986.
- [3] OLAN Y H, ORZAG S A. Lattice BGK models for the Navier-Stokes equation: nonlinear deviation in compressible regimes[J]. Euro Phys Lett, 1993, 21(3): 255-267.
- [4] LI Y X, KANG L S, WU Z J. Neural parallel and scientific computational[J]. State Phys, 1993, 1: 43-61.
- [5] SUN Chenghai. Lattice Boltzmann model of immiscible fluids[J]. Phys Rev, 1998, E58: 7283-7290.
- [6] YAN Guangwu, CHEN Yaosong, HU Shouxin. Simple lattice boltzmann model for simulating flows with shock wave[J]. Phys Rev, 1999, E59: 454-460.

Lattice Boltzmann Model for High Mach-number Flows

SHI Wen-ping¹, LI Jing², HU Jing-xing², HONG Jun², YU Hui-dan³

- (1. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;
 - 2. College of Applied Sciences, Beijing Polytechnic University, Beijing 100022, China;
 - 3. Department of Physics, Zhejiang Normal University, Jinhua 321004, China)

Abstract: The authors present a LB model to simulate high Mach-number flows by introducing an attractive force based on the simple selectable sound speed model. The corresponding macro-dynamical equation from Chapman-Enskog expansion shows that this model has the advantage to soften sound speed effectively and then the Mach-number is raised greatly(up to more than 5); The establishment of the model will open the wide vista in simulating high Mach-number flows by means of lattice.

Key words: attractive force; high Mach-number flows; lattice Boltzmann equation

第1期