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Abstract The classical limits of the one dimensional harmonic oscillator wave function and
the hydrogen wave function are studied in this paper. It is proved that these classical limits,

described classically, are for a single particle ensemble, not a single particle.
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1 Introduction

There are two kinds of view on the meaning of the classical limit of a quantum
mechanical state, one is that it describes classically a single particle, the another is
that it describes classically a single particle ensemble, we shall call such ensemble
"homogeneous ensemble”, which is introduced and defined in this article in section
2. In section 3 we derive the classical limit of one dimensional harmonic oscillator
wave function. In section 4 we derive the classical limit of the hydrogen atom wave

function.
2 Homogeneous ensemble

We consider an ensemble of single particle, for which the physical quantities G,
G,, G, are kept constant. Let h,, h,, h; be the corresponding conjugate coordinates
of G,, G,, G,, then the distribution function(DF) in the h, G phase space can be
written as

P(k, G)=P(h)é6(G-G") (1)
(1) can also be used to describe a single particle with constant value of G (5:=G,,
G,, G,), in this case

P(h)=6(k=h") (2)
where iT’(F’: =h/, h;, hy) are functions of time ¢, which are determined by equations
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of motion and initial conditions. We introduce such a single particle ensemble, that
its DF in h space is a costant, i.e.
P(h)=A=const (3)
we call it a “homogeneous ensemble” (HMES).
Now, let us turn to find HMES of a classical harmonic oscillator, the conserved

quantity is energy E, its canonical conjugate coordinate is time ¢, the DF in ¢, E

space is

P(t, EY=P(t)6(E—-£E") (4
Let P(x) be DF in configuration space, then we have

P(x)dx=2P(t)d: (5)

The factor 2 comes from the fact that in one period of time the particle pass twice

the same position. From the classical equation of motion we obtain

1 "o
= — +
x = - sin (wt+ @) (6)
from the normalization condition
T
JP(:)dt=l (7)
0
we get A=1/T, hence DF of HMES for classical harmonic oscillator in x space is
1
P(x)= 8
(x) \/ 5 . (3)
T s —X
mao

Next, we turn to find HMES of the classical electron in the hydrogen atom. The

motion of election in time is given by the following equations''!:

r=a(l—ecosy) (9)
X 1+¢ v
tan 5 - tan > (10)
ot=y—gsing (o= = —C (11)
T Jma’
where y is the polar angle in the orbit plane, ¥ is eccentric anomaly, ¢ is eccentricity,
2
e= 1+ 2EL (12)
me

where e, m, E are the charge, mass, energy of electron respectively. In this case there
are three conserved quantities, which are E, angular momentum L, z component of
L, denoted by L.. The corresponding conjugate coordinates are ¢, X, ¢. By the
definition of HMES, the DF in ¢, x, @ space is

P(t, x, ®)=A4 (13)
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DF in the spherical polar coordinates r, 6, & space P(r, 0, @) is given by

AdtdXddo=P(r, 0, ®)r’sinfdrdfdo (14)

since
_0(r, 0)

drdf= 3D dxdt (15)

hence
A
P(r, 8, ®)= 0(r,0) ,._. (16)
—6()(, D r sinf

from (9) and (11) we obtain

0r _ ecawsiny dr _
3t T—ecosy ox =0 a7

let 6, be the polar angle of the normal of the orbit plane, then

cosfy=L./L (18)

sinf ysinX =cos 0 (19)
from (19),

d cosXsinf

A (20)
using (9), (17) ~(20), we obtain

d(r, 8) _ ¢aowsinycosX sinfy

a(x,t) (t—¢ecosy)sin@

wa® [e2—(1- L) Ssin0—L?/ L2
= f_ (21)
rsinf

from the normalization condition

JJJAdthd(D=1 (22)

we get A=w/2%*, finally we obtain
1 1
LY X im2Q—_J2/72
nazr\/sz_(l_L)z 27* Jsin6- LY/ L

a

P(r,0,9)= (23)

3 Classical limit of the harmonic oscillator wave function

The quantum mechanical stationary state wave f{unction of harmonic

oscillator is!?

Y. (x)= \/l—

e 1T H (&)

o
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- 1 (_1)" = +L) - L 2
T T MPGIOTRLL @) @
where Wa,1 1 (&%) is whittaker function!’!, and
1 1 2.2
3 2 (nt =) —mo’x
i X' _ mox® _ 2 2 - 2
& P - 4 5 E. 4kcos’t (25)
where k=i(n+i) coszr=imw2x2/E E,= (n+i)hw
2 27 2 Voo 2 )
Using the asympototic formula of whittaker function:
lim W, (4kcos’t)=2k** e * (tan t)"" (26)
and . 1 i . B}
..h-{nus(H'ﬂ) =e2 ,.llmm"!=" e 2% n (27)

we can easily obtain the classical limit of ¥ (x). The totality of the two limits, the
large quantum number limit and the h — 0 limit, is called the classical limit. The
result obtained under the conditions

n—- o, h—~0, E,=(n+ %)hw=E'=const (28)

is

— 1
2 n l+ n
iV 2n)
n'y/an e"%\/ ZE

m?

P(x)=y3(x) = Jim,

1
[2E
LN B i (29)

hence we prove the conclusion that the oscillator wave function in the classical limit

describes HMES for classical harmonic oscillators.

4 Classical limit of the hydrogen wave function

In hydrogen atom electron position probability in the volume element r’sin6dr
d6 d & situated at the point (r, 6, @) is

[Wum(r, 6, ®)|*r’sinfdrdoded (30)
hence
P(r, 8, ®)=|Ya(r, 0, ®)*=|R,, (r)|* Y. (0, B)|? (31)
the classical limit of the radial wave fuaction is given by WKB method, which is!l
2
— G
Rnl(r) r2 p(r) (32)
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where )
) I({+ 7)h’

2 = +_e__—.
p(r) 2m[En r 2mr2

2m|E,|a’
= ——I;z—l— [e’=(1- (33)
the constant C, can be obtained by
JR:,(r)dr=l (34)
0
hence in the classical limit
1
L 35
|Rnl(r)| nazr\/EZ_(l_L)Z ( )
a
we turn to find the classical limit of |Y,,. (0, ®)|*
- '
1Y, (0, @)= LZED UZIMDE ) pimi o g2 (36)

4n (I+|m|)!
the associated Legendre polynomial y=P|™' (x) satisfy the following differential

equation:
" 2 ’
yim T v kR (x)y=0 (37)
where
2 _ [1=x=m?/I(l+ )]
K= a5 asn (33)
the classical limit of y obtained by WKB method is"’!
— Cz :tn
y= [l_xl_ml/l(l+1)l/4Reexp( I k(x)dx) (39)

C, can be determined by the normalization condition of spherical harmenics. Finally
we obtain the classical limit:
|

% Jsinl0-Li/L (40)

Substitute (35) and (40) in (31) we obtain (23), hence the hydrogen wave function

9, ®)*—~
IYlm( 3 )l 2

in the classical limit describes HMES for classical electrons'®!,
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