# La<sub>2</sub>O<sub>3</sub>-Mo 阴极 La<sub>2</sub>O<sub>3</sub>纳米粒子形成的研究

王金淑,周美玲,左铁镛,聂祚仁,张久兴,胡延槽 (北京工业大学 材料学院新型功能材料教育部重点实验室,北京 100022)

摘 要:采用 XRD、SEM 等方法对 La<sub>2</sub>O<sub>3</sub>-Mo 阴极中 La<sub>2</sub>O<sub>3</sub>纳米粒子的形成进行了研究.在掺杂 La<sub>(NO3)3</sub>的 MoO<sub>2</sub>粉还原阶段,发生 La<sub>2</sub>O<sub>3</sub>与 MoO<sub>2</sub>的固溶及 La<sub>2</sub>O<sub>1</sub>的脱溶,从而形成纳米 La<sub>2</sub>O<sub>3</sub>粉末. Mo 晶粒表面上的纳米 La<sub>2</sub>O<sub>3</sub>微粒分布形式不同,导致了坏体材料中微米级和纳米级两种 La<sub>2</sub>O<sub>3</sub>微粒的存在形式.另外,粉末态的 La<sub>2</sub>O<sub>5</sub> 纳米粒子在高温烧结过程中熔化,La-O 键断裂形成的 La<sup>3+</sup>,O<sup>2</sup> 高子通过固溶、脱溶过程亦可形成还体中的 La<sub>2</sub>O<sub>1</sub>纳米微粒.

关键词: La2Oa-Mo; 阴极; 纳米粒子 中田分类号: TG 146.4 文献标识码: A 文章编号: 0254-0037(2001)03-0290-04

La<sub>2</sub>O<sub>3</sub>-Mo (简称 La-Mo) 阴极是 76 年代末期研制的一种新型热阴极,它是为替代有放射性污染的 ThO<sub>2</sub>-W (简称 Th-W) 阴极而研制出来的<sup>[1~3]</sup>.这种新型阴极虽然具有发射电流大的优点,但由于其发射 稳定性不好,国际上一直未得以实际应用<sup>[4~8]</sup>.为了提高阴极的发射稳定性,文献 [9] 曾对阴极的显微结 构进行研究,发现了材料中的 La<sub>2</sub>O<sub>3</sub>以纳米和微米级粒子形式存在.前期研究还表明,阴极表面单质 La 对 阴极的发射起着重要的作用<sup>[10]</sup>,因此使阴极表面长期维持一定量的单质 La 是十分重要的.纳米粒子直 径小,比表面积大,使得纳米粒子具有高的表面活性,从而使 La<sub>2</sub>O<sub>3</sub> 与 Mo<sub>2</sub>C 反应产生单质 La 的温度降低.因为低温下活性 La 元素的蒸发小,阴极就具有较长的寿命.为了提高阴极的使用寿命,需要在阴极 中产生更多的纳米粒子.探索材料中纳米 La<sub>2</sub>O<sub>3</sub>粒子的来源,可以有效地通过控制阴极材料制备工艺,制备出含有大量纳米 La<sub>2</sub>O<sub>3</sub>粒子的 La-Mo 阴极材料.

### 1 实验方法

### 1.1 晶格常数测定

在 D/MAX 3000 衍射仪上分别测定了掺入  $w(La_2O_3) = 30\% G MoO_2 的晶格常数及还原后 Mo 的晶格常数. 将 La_2O_3 以 La(NO_3)_3 · 6H_2O 水溶液形式掺杂在 MoO_2 中,掺入质量分数为 30%. 将一部分干燥后的掺杂 MoO_2 粉及纯 MoO_2 粉在氩气气氛、1023 K 下,保温 6 h,冷却后在 D/MAX 3000 衍射仪上测定两种 MoO_2 粉的晶格常数;将另一部分掺杂 MoO_2 粉及纯 MoO_2 粉在氢气气氛、1193 K 下还原 6 h,冷却后测定两种 Mo 粉的晶格常数.$ 

### 1.2 扫描电镜观察

在 AMRAY-1910FE 场发射高分辨扫描电镜下观察掺杂 La<sub>2</sub>O<sub>3</sub>的质量分数为4%的 Mo粉形貌.用酒精做分散剂,将粉末样品在超声波仪器中处理 20 min,波频 30~35 kr/s.再将分散好的粉末悬浮液滴在单晶 Si 片上,晾干后送人扫描电镜中.

收稿日期: 2001-01-05.

基金项目:国家重点基础研究发展规划项目(973项目)(G1998061316);北京市科技新星资助项目(954810700); 北京市自然科学基金资助项目(2992006).

作者简介: 王金溆(1968-),女,博士,副教授.

#### 实验结果与讨论 2

#### 2.1 晶格常数分析

将 MoO<sub>2</sub>粉末与La(NO<sub>3</sub>)<sub>3</sub>水溶液混合,干燥后在 1023 K 氯气保护下保温 6 h,缓冷至室温,进行物相分析, 结果见图1.结果表明,处理后的试样中除含有 MoO<sub>2</sub>、 La<sub>2</sub>O<sub>3</sub>外,还有锎钼复合氧化物一La<sub>2</sub>Mo<sub>2</sub>O<sub>9</sub>和La<sub>2</sub>O<sub>3</sub>. 4MoO<sub>3</sub>,测定混合物中 MoO<sub>2</sub>及经过同样高温处理的纯 MoO<sub>2</sub>(MoO<sub>2</sub>为单斜结构)的晶格常数,结果见表 1.





增大,表明La<sub>2</sub>O<sub>3</sub>与 MoO<sub>2</sub>发生了固溶反应,La<sub>2</sub>O<sub>3</sub>固溶在 MoO<sub>2</sub>晶格中.固溶发生在掺杂La(NO<sub>3</sub>),的 MoO<sub>2</sub>粉的高温处理过程(升温及保温过程)中. 当温度升至 823 K以上时,La(NO<sub>3</sub>),开始分解为 La<sub>2</sub>O<sub>3</sub>;在 随后的升温及保温过程中,有一定量的 La2O3 固溶于 MoO2 晶格中,且其固溶量随温度的升高而增加.在 缓慢冷却过程中, 随温度的降低, 部分 La2O3从 MoO2晶格中脱溶出来, 另一部分 La2O3仍存在于 MoO2晶格 中,因而使得 MoO2 晶格常数增大.

在氢气气氛下还原掺杂 La(NO3)3的 MoO2及纯 MoO2,并测定其还原产物的晶格常数,结果见表 2.

| 表1 MoO,及播杂La2O3的MoO2晶晶的晶面间距及晶晶系数 |                   |                    |              | 夜くら   | 衣2 纯(VIO及伊东(VIO的)相回问此及用作希效 |              |               |  |
|----------------------------------|-------------------|--------------------|--------------|-------|----------------------------|--------------|---------------|--|
| 晶面                               | 纯MoO <sub>2</sub> | 掺杂MoO <sub>2</sub> | 晶格常数差值 nm    | 晶面    | 纯Mo                        | 掺杂Mo         | 晶格常数<br>差值/nm |  |
| 011                              | 3.406 28          | 3.416 55           |              |       |                            |              |               |  |
| 111                              | 2.435 25          | 2.444 22           |              | 110   | 2.204 7                    | 2.210 9      |               |  |
| 211                              | 2,420 06          | 2.426 37           |              | 200   | 1.564 3                    | 1.567 6      |               |  |
| 202                              | 2.397 64          | 2.405 07           |              | 211   | 1.279 6                    | 1.281 4      |               |  |
| 301                              | 1.836 44          | 1.839 92           |              | 110   | 1 109 4                    | 1 110 4      |               |  |
| 220                              | 1.720 34          | 1.723 35           |              | 220   | 1.1034                     | 1.110 4      |               |  |
| 222                              | 1,707 86          | 1.709 04           |              | 310   | 0,993 3                    | 0.993 8      |               |  |
| 213                              | 1.694 99          | 1.696 73           |              | 222   | 0.907 4                    | 0.907 8      |               |  |
| 310                              | 1.542 00          | 1.543 87           |              | 321   | 0.840 5                    | 0.840 7      |               |  |
| 013                              | 1,524 50          | 1.526 32           |              |       | 0.147.001.0                | 2 1 46 976 2 | 0.004.045     |  |
| 231                              | 1.400 06          | 1.401 18           |              | a=b=c | 3.146 381 /                | 3,140 8/0 2  | -0.004 945    |  |
| 314                              | 1.289 84          | 1.291 05           |              |       |                            |              |               |  |
| 晶格常数a                            | 5.602 587 4       | 5.606 286 2        | -0.036 988   |       |                            |              |               |  |
| 晶格常数b                            | 4.857 699 1       | 4.858 357 4        | -0.006 583   |       |                            |              |               |  |
| 晶格常数c                            | 5.533 310 78      | 5.535 654 10       | -0.023 433 2 |       |                            |              |               |  |
| 角度 <i>R</i>                      | 119,336.00        | 119,369 14         | -0.033 14    |       |                            |              |               |  |

由表 2 可以看出,掺杂 La(NO<sub>1</sub>);的 Mo 晶格常数比纯 Mo 的晶格常数大.晶格常数的变化表明 Mo 晶 格中仍固溶有少量的 La<sup>3+</sup>、O<sup>2-</sup>.表1的数据表明,在氧化状态下,La<sub>2</sub>O3可稳定地存在于 MoO2晶格中.因 此,在 la(NO3)3分解过程中及还原反应初期, La2O3与 MoO2形成固溶体.在随后的还原处理过程中, MoO2 被还原为金属 Mo, La2O3 不能被还原而以 La3-、O2-的形式固溶于 Mo 晶格中.但是,这种固溶很不 稳定,在氢气气氛中,随温度的降低,La<sup>3+</sup>、O<sup>2-</sup>将从 Mo 晶格中析出并重新结合成 La<sub>2</sub>O<sub>2</sub>分子.从晶格中析 出的 La<sub>2</sub>O<sub>3</sub>以纳米粒子的形式存在于 Mo 晶粒表面或其周围.

### 2.2 显微形貌观察

角度β

119.336 00

图 2 为掺杂 w (La<sub>2</sub>O<sub>3</sub>)=4%的 Mo粉的显微形貌(由于水溶液掺杂及随后的处理过程中的损失,实际 La2O1的加人量要小于4%). 显微形貌观察前,在酒精溶液中采用超声波的方法将粉末粒子分散的过程 中, Mo 晶粒表面的纳米粒子极易团聚, 从而难以观察到纳米 La2O3 粒子的大小. 对照片上的白亮小粒子 进行能谱分析,能谱图上除了明显的 La 峰外,还显示出基体 Mo 峰(能谱分析时束斑面积较大引起的).

这些白亮粒子为以团聚形式存在的 La:O4颗粒,平均粒径在 100 nm 左右, 人的粒子为 Mo 晶粒,粒径范围为 2~3 μm.

以上结果表明, 掺杂 La<sub>2</sub>O<sub>3</sub> 的 MoO<sub>2</sub> 经还原处理后, La<sub>2</sub>O<sub>5</sub>以纳 米粒子的形式存在于 Mo 晶粒周围。 在随后进行的 La<sub>2</sub>O<sub>5</sub>-Mo 材 料的压制, 烧结过程中, 如果 Mo 晶粒表面的部分纳米 La<sub>2</sub>O<sub>5</sub>粒子弥 散分布, 晶粒间距离较大, 即 La<sub>2</sub>O<sub>5</sub>粒子主要被 Mo 晶粒包围, 则界 面迁移条件不能满足, 晶粒不能长大, 纳米 La<sub>2</sub>O<sub>5</sub>粒子仍基本保持 其原大小, 形成弥散的纳米粒子, 见图 3(引自文献 [9]). 如果 Mo 晶粒表面的纳米 La<sub>2</sub>O<sub>5</sub>粒子以团聚形式存在, 则在加热条件下, 界 面能高, 粒径较大的纳米粒子的品界将发生迁移, 在并小粒子, 在



图2 邊杂Mo粉的显微形貌

高温下晶粒迅速长大,形成微米级的 La<sub>2</sub>O,粒子,基体中纳米 La<sub>2</sub>O,粒子的形成也可以用固溶、脱溶理论解释,前已提及,掺杂 La<sub>2</sub>O,的钢粉还原过程后期、脑温度的降低,La<sup>3-</sup>、O<sup>2-</sup>从 Mo 晶格中析出,重新结合成分子后以纳米粒子的形式存在于 Mo 晶粒表面,而在稀土-钼坯体烧结过程中,由于纳米微粒小,表面能高,比表面原子数多,这些表面原子近邻配位不全,活性大,体积远小于大块体材料,纳米粒子熔化时所需增加的内能小得多,这就使得纳米微粒熔点急剧下降。因而在烧结温度下,纳米 La<sub>2</sub>O<sub>3</sub>粒子可能发生熔化,La<sup>-</sup>O 键强度减弱,易断裂成 La<sup>3+</sup>,O<sup>2</sup>,两种离子固溶于 Mo 晶格中,在随后的冷却过程中,La<sup>3+</sup>,O<sup>2-</sup>从 Mo 晶格中,重新结合成分子后以纳米 La<sub>2</sub>O<sub>3</sub>粒子形式存在于钼基体中,





(b) 暗场像

图3 钼基体中纳米La2O3的形态(60 000×)

上述分析表明,掺杂 La(NO3)3的 MoO2粉在还原中两种氧化物可能会发生固溶及脱溶过程,从而形成 纳米 La2O3粒子.纳米氧化物粒子可以降低阴极激活及工作温度,因此在原料制备阶段,必须采用稀土硝 酸盐掺杂在氧化钼中的形式而不能直接将 La2O3混入 Mo 粉中.

### 3 结论

1) 掺杂 La(NO<sub>3</sub>)<sub>3</sub>的 MoO<sub>2</sub>粉处理阶段,发生 La<sub>2</sub>O<sub>3</sub>与 MoO<sub>3</sub>的固溶及 La<sub>2</sub>O<sub>3</sub>的脱溶,La<sub>2</sub>O<sub>3</sub>以纳米粒子 的形式存在于 Mo 晶粒周围.

2) Mo 晶粒表面上的纳米 La<sub>2</sub>O<sub>3</sub> 微粒分布形式不同,导致了坯体材料中 La<sub>2</sub>O<sub>3</sub>粒子不同的存在形式. 弥散分布的纳米 La<sub>2</sub>O<sub>3</sub>粒子在烧结过成中保持其原大小;团聚体中的 La<sub>2</sub>O<sub>3</sub>粒子在烧结过程中,晶粒长大, 形成微米级 La<sub>2</sub>O<sub>3</sub>粒子.

3) 坯体烧结过程中,粉末原料制备阶段形成的纳米La<sub>2</sub>O,粒子熔化,La-O键断裂形成La<sup>3+</sup>,O<sup>2-</sup>,并发 生两种离子在 Mo 晶格中的固溶和脱溶,脱溶出的La<sub>2</sub>O,以纳米形式存在于基体中.

2001年

### ,参考文献:

- [1]BUXBAUM C, GESSINGER G, Reaction Cathode, US: 4019081[P] 1977.
- [2] BUXBAUM C, GESSINGER G. Lanthanated Thermionic Cathodes. US: 4083811[P] 1978.
- [3]GOFBEL D M. La-Mo emitter in hollow cathode [J]. Review of Science Instrument, 1980, 51(11):1468-1470.
- [4] GOEBEL D M. HIROOKA Y, CAMPBELL G A. Large area lanthanum molyhdenum electron emitters[J]. Review of Science Instrument, 1985, 56(10): 1888-1893.
- [5] ZHOU Meiling, CHEN Zhongchun, ZHANG Jiuxing. A Study of the properties of Mo-La<sub>2</sub>O<sub>3</sub> thermionic electron-emission material[J]. High Temperature-High Pressures, 1994, 26: 145-149.
- [6] ZHOU Meiling. WANG Jinshu, ZHANG Jiuxing, et al. Thermodynamic analysis of Mo-La<sub>2</sub>O<sub>3</sub> thermionic cathode wire[J]. Tran Nonferrous Met Soc China, 1996, 6(4): 56-60.
- [7] 张久兴,周美玲,王金淑,等. La-Mo 阴极材料进展[A]. 夏叶清,徐曼. 生物及环境材料,96'中国材料研讨会,Ⅲ-2
  [C]. 北京: 化学工业出版社, 1997. 585-589.
- [8] WANG Jinshu, ZHOU Meiling, NIE Zuoren, et al. A study of diffusion behavior of elements lanthanum and oxygen in Mo-La<sub>2</sub>O<sub>3</sub> cathode[J]. Journal of Alloys and Compounds, 2000, 311: 82-85.
- [9] 聂祚仁、稀土钼 / 钨阴极材料热发射研究 [D]. 长沙:中南工业大学, 1997. 99.
- [10] WANG Jinshu, ZHOU Meiling, ZHANG Jiuxing, et al. A Study of function mechanism of carbonized layer at the surface of La<sub>2</sub>O<sub>3</sub>-Mo cathode [J]. Tran Nonferrous Met Soc China, 2001, 11(1): 26-29.

## Study of Formation of La<sub>2</sub>O<sub>3</sub> Nanoparticles in La<sub>2</sub>O<sub>3</sub>-Mo Cathode

WANG Jin-shu, ZHOU Mei-ling, ZUO Tie-yong, NIE Zuo-ren, ZHANG Jiu-xing, HU Yan-cao (College of Materials Science and Engineering, Beijing Polytechnic University, Beijing 100022, China)

Abstract: The formation of  $La_2O_3$  nanoparticles in the  $La_2O_3$ -Mo cathode has been discussed by using XRD and SEM methods. In the reduction of MoO<sub>2</sub> powder doped with  $La(NO_3)_3$ ,  $La_2O_3$  and MoO<sub>2</sub> may form solid solution and the following precipitation of  $La_2O_3$  from Mo lattice will take place, which results in the formation of  $La_2O_3$  nanoparticles. The sizes of  $La_2O_3$  particles in nanometer and micrometer in the  $La_2O_3$ -Mo body depend on the distribution of  $La_2O_3$  nanoparticles on the surface of Mo particles. Another explanation of  $La_2O_3$  nanoparticles in the  $La_2O_3$ -Mo cathode is as follows. The powdered  $La_2O_3$  nanoparticles will melt during the high temperature sintering of  $La_2O_3$ -Mo materials. The  $La^{3+}$  and  $O^{2-}$  produced by the break-off of La-O bonds may substitute for Mo atoms and precipitate from Mo lattice, then recombine into  $La_2O_3$  nanoparticles.

Key words: La<sub>2</sub>O<sub>3</sub>-Mo; cathode; nanoparticle