非饱和土的黏弹塑性本构模型研究

李冬1,2,刘艳1

(1.北京交通大学土木建筑工程学院,北京 100044;2.中车建设工程有限公司,北京 100078)

摘 要: 非饱和土变形是随时间发展的,为了描述非饱和土随时间变化的长期变形行为,本文建立了非饱和土黏弹 塑性模型. 在已有的非饱和土率无关模型的基础上,考虑应变率对变形和强度影响,建立了一个非饱和土率相关的 黏弹塑性模型. 根据试验结果,应变率越大,屈服应力则越大,将屈服应力表示为应变率的函数,给出率相关影响的 加载湿陷屈服面. 利用一致性条件,给出了一维条件下非饱和土的增量方程. 对模型进行数值分析,对模型基本行 为进行预测. 将模型退化饱和条件和率无关2种情形,利用已有的试验结果对模型进行了验证,结果表明模型可以 用于预测非饱和土的蠕变行为.

文章编号: 0254-0037(2018)03-0321-06

Visco-elasto-plasitc Constitutive Model for Unsaturated Soils

LI Dong^{1,2}, LIU Yan¹

(1. School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044;2 CRRC Construction Eng. Co. Ltd., Beijing, 100078)

Abstract: It is necessary to build a visco-elasto-plasite constitutive model for unsaturated soils, because soils deform over time. Based on existed rate independent constitutive model, a rate dependent model which considers the influence of strain rate on soil behavior is developed. Previous test data indicated that the preconsolidate stress increased with the strain rate. Accordingly, the strain rate was included in the hardening equation, and thus the loading collapse yield surface was rate dependent. The one-dimensional constitutive equation of unsaturated soil was then obtained with the help of consistency condition. The model was used to compare with the existing test data. The model simulations show the model behaviors. The model was used to predicted experimental data for the degenerated cases included saturated condition and rate independent condition. Results show a good consistency.

Key words: unsaturated soil; visco-elastoplasticity; constitutive model

土体受力变形是一个随时间发展而不断变化的 过程,最终会达到一种相对稳定或破坏的状态.这 种时间相关性,称之为黏性.土体的强度与其加载 速率密切相关,土体的应力、应变和强度之间存在着 显著的率相关性.率效应对黏土的应力-应变行为、 超静孔隙水压力及其抗剪强度有很大的影响.根据 土体的应力-应变-应变率关系建立相应的率相关 模型、分析土体率相关特性已经成为近几十年广泛 开展的研究课题.一维等速率试验、三轴不排水情 况下的控制加载速率剪切试验是广大学者进行应变

基金项目:宁波市交通运输科技资助项目(201710);中央高校基本科研业务费专项资助项目(2014JBM090) 作者简介:李 冬(1990—),男,工程师,主要从事非饱和土方面的研究,E-mail:zcjgld@163.com 通信作者:刘 艳(1983—),女,副教授,主要从事非饱和土方面的研究,E-mail:yanl@bjtu.edu.cn

收稿日期: 2017-08-08

率效应研究的主要手段[1-2].

自提出土体具有黏塑性以来,国内外学者已经 建立了大量的相关本构模型^[39].基于建立模型所 依据的不同理论,现有模型主要有3类:基本元件模 型、基于蠕变特性的经验-半经验本构模型和基于 塑性理论的弹黏塑性本构模型.基本元件模型是以 胡克弹簧、牛顿黏壶和圣维南刚塑性体3种基本元 件不同的串联或并联组合模拟土体的弹黏塑性特 征,具有表达直观、简单,物理意义较明确的特点. 但由于元件自身的特点,它们的不同组合并不能描 述土体率相关的非线性特征.经验性或半经验性模 型是在总结、归纳大量试验结果的基础上建立起来 的本构模型.这类模型常常受到边界条件和加载条 件的限制,通用性稍差.

弹黏塑性理论以经典塑性理论为基础,主要研 究屈服面、关联准则和硬化规律随时间的变化关系. 衍生出过应力理论模型和非稳态流动面模型. 当 前,广泛采取的方法是在塑性理论中考虑黏性对屈 服面的贡献,建立应力-应变-应变率的屈服面模型 或塑性应变与时间的关系. 过应力理论^[10]认为.利 用动态加载面来判别是否有黏性产生,将动态加载 面与静态加载面之差定义为过应力函数,只有当动 态加载面在静态屈服面之外时,土体才会产生黏塑 性变化. 随后发展出采用势函数代替动态加载函数 的方法,势函数的求取是该模型的关键. 非稳态流 动面理论是对无黏性弹塑性理论的发展,其在经典 弹塑性理论的基础上引入一个与时间相关的应变函 数因子,用以反映屈服面随时间的变化,从而建立起 应力-应变与时间的关系. 非稳态流动面理论与过 应力理论在表观上有诸多相似之处,但两者所依据 的流动法则和考虑时间的函数不同.

尽管目前已发展了大量率相关模型,但这些模型主要是针对饱和土,现阶段非饱和土黏性问题的研究太少,非饱和土本构模型研究也主要集中在率无关弹塑性模型方面^[11].实际上非饱和土中由于涉及到孔隙气水的流动,其变形受时间影响很大,此外在多场耦合作用下,不同响应特征时间各不相同,率效应的研究对土体行为有重要影响^[12].针对非饱和土率相关问题进行研究,建立相关的本构模型具有重要意义.Oka等^[13]基于过应力理论建立了一个非饱和土的弹黏塑性模型.Pereira等^[14]在非饱和土巴塞罗那(BBM)模型的基础上,将应变率影响引入模型中,建立一个简单的非饱和土率相关模型.

本文将在已有的非饱和土率无关模型的基础

上,考虑应变率对非饱和土的影响,在模型中引入应 变率,以考虑其对屈服应力、变形和强度的影响,建 立一个率相关的弹黏塑性模型.随后对模型进行数 值分析,以说明模型的率相关行为.

1 模型建立

1.1 模型的基本变量

本节将采用 Bishop 有效应力 $\tilde{\sigma}_{ij}$ 和修正吸力 \tilde{s} 为基本应力变量来建立模型,分别表示为

$$\widetilde{\sigma}_{ij} = \overline{\sigma}_{ij} + sS_r \delta_{ij} \tag{1}$$

$$= ns$$
 (2)

式中: $\overline{\sigma}_{ij}$ 为净应力;s为基质吸力; S_i 为饱和度;n为孔隙率.

模型的固相部分对应的土体变形分解为弹性和 黏塑性2部分,即

$$\mathrm{d}\boldsymbol{\varepsilon} = \mathrm{d}\boldsymbol{\varepsilon}^{\mathrm{e}} + \mathrm{d}\boldsymbol{\varepsilon}^{\mathrm{vp}} \tag{3}$$

式中:dɛ°代表弹性应变增量;dɛ^{vp}代表黏塑性应变 增量.

弹性关系可以表示为

$$\mathrm{d}\boldsymbol{\varepsilon}_{v}^{\mathrm{e}} = \frac{\kappa}{v\tilde{p}}\mathrm{d}\tilde{p} = \frac{1}{K}\mathrm{d}\tilde{p} \qquad (4)$$

式中: \hat{p} 为平均有效应力; ε_v° 为弹性体应变;v为比体积; κ 为弹性常数; $K = (\hat{p})/\kappa$ 为弹性体积模量.

土水特征曲线采用简化双线性形式,假设边界 线饱和度的变化为弹塑性,其斜率为λ_w,扫描线上 只有弹性变化,其斜率为κ_w,饱和度的变化表示为

$$dS_{\rm r} = dS_{\rm r}^{\rm e} + dS_{\rm r}^{\rm p}$$
(5)

其中液相饱和度的弹性变化可以表示为

$$\mathrm{d}S_{\mathrm{r}}^{\mathrm{e}} = -\frac{\kappa_{\mathrm{w}}\mathrm{d}\tilde{s}}{\tilde{s}} \tag{6}$$

当吸力发生屈服时,塑性饱和度增量为

$$dS_{r}^{p} = -(\lambda_{w} - \kappa_{w})\frac{d\tilde{s}}{\tilde{s}}$$
(7)

1.2 率效应的引入

加载湿陷屈服面是建立非饱和土本构模型的关键,它给出了屈服应力随吸力变化的关系.考虑不同因素对屈服应力的影响,可一般表示为

 $p_{c}(X,s) = p_{c0}p_{cx}(X)p_{cw}(s)$ (8) 式中: p_{c0} 为饱和土的先期固结压力;X为硬化参数; $p_{ex}(X)$ 为与X有关的屈服应力; $p_{cw}(s)$ 为与s有关的屈服应力.

通常选择能够反映应力历史的塑性变形作为模

323

型硬化方程的硬化参数.固相硬化方程中,首先选 择塑性体应变作为硬化参数.此外,在耦合弹黏塑 性模型中,由于液相变形对固相屈服有影响,因此, 固相硬化应包含液相变形因素.但研究指出吸力不 能作为一个硬化参数,此外,加载湿陷屈服面(LC) 给出的吸力作用也无法反映干湿循环出现的滞回效 应.而塑性饱和度可以反映液相饱和度的变化历 史,在率无关模型中一般选用塑性体变和塑性饱和 度作为硬化参数,即

 $p_{eX}(\varepsilon_v^{p}, S_r^{p}) = \exp((K_s \varepsilon_v^{vp}) \exp((-k_{sw} K_w S_r^{p}))$ (9) 式中

$$K_{\rm s} = v/(\lambda - \kappa)$$
$$K_{\rm w} = 1/(\lambda_{\rm w} - \kappa_{\rm w})$$

式中:k_{sw}为耦合系数;λ 为正常固结线斜率.

屈服应力与吸力的关系可参考已有模型给出^[15]

$$p_{cw}(s) = 1 + \phi[(\tilde{s}/s_a)^{\theta} - 1]$$
(10)
式中:s_a为进气值; $\phi \ \pi \theta$ 为拟合参数.

已有研究表明,黏土的加载速率对土体变形和 强度有重要影响,根据试验结果,加载速率越大,土 体的先期固结压力也越大^[16-17],朱启银等^[18]概括了 17种黏土等速率试验结果,发现在一定应变率范围 内归一化先期固结压力与加载速率成正比,应变率 越大、屈服应力越高.因此,可将饱和土先期固结压 力表示为应变率的函数^[19-20],即

$$p_{c0} = p^{r} \left(\frac{\dot{\varepsilon}_{v}}{\dot{\varepsilon}_{v}^{r}}\right)^{\beta(s)}$$
(11)

式中:p'为与参考应变率 ε'_{v} 对应的先期固结压力; $\beta(s)$ 计算公式为

$$\beta(s) = \beta(0) - bs \tag{12}$$

式中:b反映了吸力对 $\beta(0)$ 的影响; $\beta(0)$ 为饱和土的先期固结压力与应变率函数关系的斜率,其大小为次固结系数与 λ 的比值.

将式(9)~(11)代入式(8),即可得到最终 LC 屈服方程的表达式

$$p_{c} = p^{r} \left(\frac{\dot{\varepsilon}_{v}}{\dot{\varepsilon}_{v}^{r}}\right)^{\beta(s)} \left\{1 + \phi \left[\left(\frac{\tilde{s}}{s_{a}}\right)^{\theta} - 1\right]\right\} \cdot \exp\left(\left(\frac{k}{s_{a}}\right)^{\theta}\right) \exp\left(\left(\frac{k}{s_{a}}\right)^{\theta}\right) + \frac{13}{2} \left(\frac{k}{s_{a}}\right)^{\theta} + \frac{13}{2$$

$$\exp\left(\mathbf{K}_{s}\boldsymbol{\mathcal{E}}_{v}^{t}\right)\exp\left(-\boldsymbol{\kappa}_{sw}\mathbf{K}_{w}\boldsymbol{\mathcal{S}}_{r}^{t}\right)$$
(15)

式(13)表明固相硬化方程与塑性体应变 ε_v^{P} 、应 变率 $\dot{\varepsilon}_v$ 和塑性饱和度 S_v^{P} 相关.

1.3 增量本构方程

为了简化,这里采用相关联流动法则确定非饱 和土中固相的黏塑性应变增量,表示为

$$\mathrm{d}\varepsilon_{v}^{\mathrm{vp}} = \delta\phi_{s} \frac{\partial f_{s}}{\partial \tilde{p}}$$
(14)

对于塑性加载而言,利用一致性条件,硬化方程 和流动法则代入,并对其进行求解,可得出黏塑性体 变增量为

$$\mathrm{d}\boldsymbol{\varepsilon}_{v}^{\mathrm{vp}} = \frac{1}{K_{s}} \left(\frac{\mathrm{d}\tilde{p}}{\tilde{p}} - k_{\mathrm{sw}} \frac{\mathrm{d}\tilde{s}}{\tilde{s}} - \boldsymbol{\beta} \, \tilde{p} \frac{\mathrm{d}\boldsymbol{\dot{\varepsilon}}_{v}}{\boldsymbol{\dot{\varepsilon}}_{v}} \right)$$
(15)

将式(4)(15)代入式(3)中,即可得到总的体变 表达式为

$$\mathrm{d}\boldsymbol{\varepsilon}_{\mathrm{v}} = \left(\frac{1}{K} + \frac{1}{K_{\mathrm{s}}\tilde{p}}\right) \mathrm{d}\,\tilde{p} - \frac{k_{\mathrm{sw}}}{K_{\mathrm{s}}} \frac{1}{\tilde{s}} \mathrm{d}\,\tilde{s} - \frac{\beta\,\tilde{p}}{K_{\mathrm{s}}\dot{\boldsymbol{\varepsilon}}_{\mathrm{v}}} \mathrm{d}\dot{\boldsymbol{\varepsilon}}_{\mathrm{v}}$$

(16)

式中:de,表示总的体应变增量;de,表示体变率增量.式(16)表明土体的体变不仅与外力和吸力的变化有关,还与时间相关,利用该式可以对土体的黏塑性行为进行模拟.

2 数值模拟

本节将利用已有试验来对模型进行数值分析. 模型涉及到的参数主要有3类:

 1)饱和土相关参数,即λ、κ,此类参数可利用 饱和土固结试验来获得.

2) 非饱和土相关参数,其中 LC 屈服面参数 ϕ 、 θ 通过非饱和土控制吸力的等向固结试验来获得; 土水特征曲线参数 λ_w, κ_w 通过干湿循环试验来获 得;耦合系数 k_{sw} 则需通过上述 2 种试验相互组合来 获得.

 3)率相关参数 β(0)、b 和 p^r,需要采用控制不 同吸力条件下的蠕变试验来获得.

已有的试验大多针对饱和土,很少非饱和土时间效应的试验,所以接下来将模型退化为饱和土率 相关(即s=0)和非饱和土率无关(即 $\dot{e}_v = 0$)2种情 形进行验证,并对率相关行为进行模拟.

2.1 饱和土(s=0)的数值模拟

首先选择 Batiscan 原状黏土的等向加载试验结 果^[21]来验证模型预测的合理性. 该试验针对饱和 土(即*s*=0)展开,模型参数如表1所示^[21].

图1中,应变率越大,先期固结压力越大,两 者存在正比关系.当应变率增大相同的倍数时,先 期固结压力的增加量基本相同.在体应变小于 15%时,二者具有较好的吻合性,尤其是应变率对 先期固结压力的影响与试验结果相一致,但是当 应变大于15%时,二者开始出现较为明显的差异

表1 模型参数及初始条件 Table 1 Model parameters

	L
参数类型	参数取值
传统参数	$\lambda = 1.25, \kappa = 0.037$
	$p^{r} = 125 \text{ kPa}$
应变率参数	$\dot{\varepsilon}_{v}^{r} = 5 \times 10^{-5} / s$
	$\beta(0) = 0.04$
初始体积	<i>v</i> = 2. 92

性.这是由于原状黏土中普遍存在结构性,而本文 在建立模型时,没有考虑到原状黏土的结构性,因 此对前期应力应变特征具有较好的拟合性,而对 次固结阶段中黏土结构性的影响反映较差.当应 变率越大时,结构性的表现越明显,这种差异性出 现越早.

Fig. 1 Relationship between volumetric strain and effective stress for saturated soils

图 2 中给出了饱和土(*s*=0)时不同应力水平 下土体体变与时间关系的模拟结果.在 2 种应力

图 2 不同应力下体应变与时间曲线

Fig. 2 Relationship between volumetric strain and time

下计算结果均表现了蠕变收敛的趋势,应力应变 趋势与试验结果一致.但当应变不断增大时,模拟 计算的变形随时间快速发展,黏滞性表现不明显. 总体上来看,主要是由于模型未考虑原状黏土的 结构性及固结过程中的耦合作用.同时,模型中采 用的次固结系数是常数,与实际并不相符,这也对 预测结果产生了一定的影响.通过对次固结系数 进行简单的非线性修正(具体方法为取次固结系 数是时间的函数)可以得到更符合试验结果的预 测曲线^[22].

2.2 非饱和土的数值模拟

接下来选择 Sharma^[23] 给出的不同吸力(100 kPa 和 300 kPa)下的试验结果进行分析. 根据试验 结果确定模型相关参数取值列于表 2 中.

表 2 模型参数及初始条件 Table 2 Model parameters

参数类型	参数取值
传统参数	$\lambda = 0.37, \kappa = 0.03$
LC 参数	$\phi = 0.45, \theta = 0.6$
流体参数	$\lambda_{w} = 0.2, \kappa_{w} = 0.015$
耦合系数	$k_{sw} = 0.6$
初始应力	$p_{c0} = 17 \text{ kPa}, s_a = 0.77 \text{ kPa}$
初始饱和度	$S_{r1} = 0.65, S_{r2} = 0.57, S_{r3} = 0.5$
初始体积	$v_1 = 2.31, v_2 = 2.27, v_3 = 2.26$

由于缺少部分试验,以下模拟只能在 Sharma^[23] 给出的试验结果的基础上对模型率相关模拟的弹塑 性参数进行标定,给出假设的率相关参数 $\beta(0) = 0.06$ 、b = 0.00005、 $p^r = 17$ kPa.

图 3 给出了吸力分别为 100 kPa 和 300 kPa 时, 不同加载速率的土体的孔隙比与净应力的预测曲 线.试验结果取自 Sharma^[23],当不考虑应变率影 响,即 dp/dt = 0 时,预测曲线与实测结果完全相符. 在吸力作用下,土体的初始比体积随吸力增大而减 小,屈服应力随吸力增加而变大,体积变化量随吸力 增大而减小,反映了吸力对模型硬化的影响.

应力率增大,相应的应变率也会随之增大.图3 中,当加载速率增大时,土体的先期固结压力明显增 大,表明了加载速率对土体屈服的影响作用.当净 应力达到200 kPa时,保持不变,土体产生了明显的 蠕变变化趋势,如图4所示.此外,吸力增大后,加 载速率增大所引起的屈服应力的增大略有减小,这 与应变率参数β的改变有关.总体而言,模型能够

- 35 不问效力,不问加载还半十九陈几马应力的大乐
- Fig. 3 Relationship between void ratio and net stress under different suction and stress rate

描述非饱和土相关的应力-应变-强度之间的变化 趋势,从而验证模型的合理性.

图 4 不同吸力、不同加载速率下体变与时间的关系

Fig. 4 Relationship between volumetric strain and time under different suction and stress rate

3 结论

 本文提出了一个非饱和土弹黏塑性的本构 模型.模型采用修正吸力和有效应力作为应力状态 变量,考虑了先期固结压力与应变率在对数空间内 存在正比关系,在硬化方程中引入了应变率的影响 因素.整个模型中共含有10个模型参数,均可通过 试验获得.

2)将模型分别退化为饱和土率相关模型和非 饱和土率无关模型,通过与已有试验数据的对比,从 侧面验证了模型的合理性,同时给出相同吸力下不 同应变率的率相关模拟结果.

3)在等向固结压缩试验中模型能够很好反映 应变率效应,对黏土的先期固结压力的率相关性取 得了较好的模拟结果,无论是饱和土还是非饱和土 其先期固结压力随着应变率的增大或应力加载率增 大而增大.同时模型还可以预测停止加载后土体的 蠕变行为,模拟结果在蠕变阶段表现出线性特征,如 果对参数β进行修正则可以得到更好模拟结果.

参考文献:

- [1] AUGUSTESEN A, LIINGAARD M, LADE P. Evaluation of time-dependent behavior of soils [J]. International Journal of Geomechanics, 2004, 34(3): 137-156.
- [2] 尹振宇,朱启银,朱俊高. 软黏土蠕变特性试验研究: 回顾与发展[J]. 岩土力学, 2013, 34(增刊2):1-17.
 YIN Z Y, ZHU Q Y, ZHU J G. Experimental investigation on creep behavior of soft clays: review and development
 [J]. Rock and Soil Mechanics, 2013, 34(Suppl 2): 1-17. (in Chinese)
- [3] LIINGAARD M, AUGUSTESEN A, LADE P. Characterization of models for time-dependent behavior of soils[J]. International Journal of Geomechanics, 2004, 4 (3): 157-177.
- [4] 王者超, 乔丽苹. 土蠕变性质及其模型研究综述与讨论[J]. 岩土力学, 2011(8): 2251-2260.
 WANG Z C, QIAO L P. A review and discussion on creep behavior of soil and its models [J]. Rock and Soil Mechanics, 2011(8): 2251-2260. (in Chinese)
- [5] 殷建华. 等效时间和岩土材料的弹粘塑性模型[J]. 岩石力学与工程学报, 1999, 18(2): 6-10.
 YIN J H. Equivalent time and elastic visco-plastic modelling of geomaterials [J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 6-10. (in Chinese)
- [6] 袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6): 772-779.
 YUAN J, GONG X N, YI D Q. Comparison study on rheological constitutive models [J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 772-779. (in Chinese)
- [7] YAO Y P, KONG L M, HU J. An elastic-viscous-plastic model for overconsolidated clays [J]. Science China (Technological Sciences), 2013(2): 441-457.
- [8] 孔令明,罗汀,姚仰平.率相关本构模型的临界状态描述[J].岩土力学,2015,36(9):2442-2450.
 KONG L M, LUO T, YAO Y P. Description of critical state for rate-dependent constitutious models [J]. Rock

and Soil Mechanics, 2015, 36 (9): 2442-2450. (in Chinese)

- [9] 尹振宇. 软黏土流变理论及应用[M]. 上海: 同济大学 出版社, 2016.
- [10] PERZYNA P. On the constitutive equations for workhardening and rate sensitive plastic materials [J]. Proc Vibration Problems, 1964, 12: 281-290.
- [11] 刘艳,赵成刚,蔡国庆,等. 非饱和土力学理论的研究 进展[J]. 力学与实践, 2015, 37(4): 457-465.
 LIU Y, ZHAO C G, CAI G Q, et al. Research development of unsaturated soil mechanics [J].
 Mechanics in Engineering, 2015, 37(4): 457-465. (in Chinese)
- [12] 刘艳,赵成刚,蔡国庆.理性土力学与热力学[M]. 北京:科学出版社,2016.
- [13] OKA F, KODAKA T, KIMOTO S. An elasto-viscoplastic model and multiphase coupled FE analysis for unsaturated soil [C] // The Fourth International Conference on Unsaturated Soils. Carefree, Arizona: ASCE, 2006: 2039-2050.
- [14] PEREIRA J, DE GENNARO V. On the time-dependent behaviour of unsaturated geomaterials [C] // The Fifth International Conference on Unsaturated Soils. Barcelona: CRC Press, 2010, 2: 921-925.
- [15] 刘艳,韦昌富,赵成刚,等.一个高饱和度非饱和土的本构模型[J].岩土力学,2013,34(8):2189-2194.

LIU Y, WEI C F, ZHAO C G, et al. A constitutive model of unsaturated soils with high saturation [J]. Rock and Soil Mechanics, 2013, 34(8): 2189-2194. (in Chinese)

[16] YIN J H, GRAHAM J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils [J]. Canadian Geotechnical Journal, 1999, 36(4): 736-745.

- [17] YIN Z Y, KARSTUNEN M. Modelling strain-ratedependency of natural soft clays combined with anisotropy and destructuration [J]. Acta Mechanica Solida Sinica, 2011, 24(3): 216-230.
- [18] 朱启银, 尹振宇, 朱俊高, 等. 软黏土加载速率效应 特性试验研究: 进展与趋势[J]. 岩土力学, 2014, 35 (1): 7-24.
 ZHUQY, YINZY, ZHUJG, et al. Progress and trend of experimental investigation on rate-dependent behavior of soft clays[J]. Rock and Soil Mechanics, 2014, 35 (1): 7-24. (in Chinese)
- [19] DE GENNARO V, PEREIRA J M, GUTIERREZ M. On the viscoplastic modelling of porous chalks [J]. Italian Geotechnical Journal, 2009(1): 44-64.
- [20] DE GENNARO V, PEREIRA J M. A viscoplastic constitutive model for unsaturated geomaterials [J]. Computers and Geotechnics, 2013, 54 (Suppl C): 143-151.
- [21] YIN Z Y, WANG J. A one-dimensional strain-rate based model for soft structured clays [J]. Science China (Technological Sciences), 2012(1): 90-100.
- [22] 李冬. 非饱和土率相关本构模型研究[D]. 北京: 北京交通大学, 2017.
 LI D. Study on rate dependent constitutive model for unsaturated soils [D]. Beijing: Beijing Jiaotong
- [23] SHARMA R S. Mechanical behaviour of unsaturated highly expansive clays [D]. Oxford: University of Oxford, 1998.

University, 2017. (in Chinese)

(责任编辑 郑筱梅)