Mg-Gd-Er-Zn 稀土变形镁合金的 微观组织与力学性能

王朝辉,李楠楠,刘 轲,李淑波,杜文博 (北京工业大学材料科学与工程学院,北京 100124)

摘 要:为研究 Mg-Gd-Er-Zn 稀土变形镁合金微观组织与力学性能,通过金属模铸造、固溶处理、热挤压和时效处 理工艺过程,制备了 Mg-Gd-Er-Zn 稀土变形镁合金,并利用金相显微镜(optical microscopy, OM)、X 射线衍射仪(Xray diffraction, XRD)、扫描电镜(scanning electron microscopy, SEM)及透射电镜(transmission electron microscopy, TEM)等手段进行表征.结果表明:Mg-Gd-Er-Zn 合金的铸态组织主要由 α-Mg 基体和沿晶界分布的(Mg,Zn)₃Gd 第 2 相组成,固溶后生成层片状的长周期堆垛有序(long period stacking ordered,LPSO)结构;经过热挤压变形,合金的 晶粒得到显著细化;时效处理过程中,合金中析出纳米级尺寸的 β′相.最终时效态合金的室温抗拉强度、屈服强度 和伸长率可分别达 397.5 MPa、359.0 MPa 和 6.0%.

关键词: Mg-Gd-Er-Zn;长周期堆垛有序(LPSO);微观组织;力学性能;强韧化机制
 中图分类号: TG 146.2
 文献标志码: A
 文章编号: 0254 - 0037(2017)07 - 1017 - 06
 doi: 10.11936/bjutxb2016110049

Microstructure and Mechanical Properties of Mg-Gd-Er-Zn Wrought Magnesium Alloy Containing RE

WANG Zhaohui, LI Nannan, LIU Ke, LI Shubo, DU Wenbo

(College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract: In order to research the microstructures and mechanical properties of Mg-Gd-Er-Zn wrought magnesium alloy under different states. Mg-Gd-Gd-Zn alloy was prepared by conventional metal mold casting, solution treatment, subsequently hot extrusion and ageing treatment, and was studied by using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the as-cast microstructures of Mg-Gd-Er-Zn alloy consists of α -Mg matrix and second-phase (Mg,Zn)₃Gd phase which distributes around α -Mg matrix. After solution treatment, the lamellar long period stacking ordered (LPSO) structure appeared. During hot extrusion, the grain of this alloy can be refined dramatically. And subsequently aged, the nano β' phases were precipitated. Finally, the tensile strength, yield strength and elongation of the aged alloys at room condition reach 397. 5 MPa, 359. 0 MPa and 6. 0%, respectively.

Key words: Mg-Gd-Er-Zn; long period stacking ordered (LPSO); microstructure; mechanical properties; strengthening mechanism

收稿日期: 2016-11-27

基金项目: 国家重点研发计划资助项目(2016YFB0101604);北京市自然科学基金资助项目(2162003);北京工业大学"智能 制造领域大科研推进计划"资助项目

作者简介:王朝辉(1979—),男,副教授,主要从事镁铝基复合材料制备及成形、稀土镁合金、材料加工数值模拟方面的研究,E-mail:wangzhaohui@bjut.edu.cn

镁合金是目前最轻的实用化金属结构材料,具 有比强度和比刚度高、电磁屏蔽能力强、减震性能好 等一系列优点,是制造机器人、汽车、电子产品等零 部件的理想材料之一^[15].

目前,制约镁合金大规模应用的瓶颈主要是其 强度低、室温塑性差和易腐蚀等^[6-7].尤其镁合金同 钢铁、铝合金材料相比,其绝对强度较低.研究表 明,稀土元素的加入可以提高镁合金的室温和高温 性能,降低腐蚀速率及改善其塑性成形能力^[8].近 年来,Mg-Gd 系、Mg-Y 系、Mg-Zn-Gd 系和 Mg-Gd-Y 系合金由于具有良好的室温力学性能引起研究者的 广泛关注.Gao 等^[9]研究了经 T6 时效处理后的 Mg-15Gd-4Y-0.5Zr 合金,其抗拉强度为 276.9 MPa;彭 卓凯等^[10]研究了 Mn 和 Zr 对 Mg-Gd-Y 合金组织与 力学性能的影响,结果发现 T5 态 Mg-9Gd-4Y-0.6Zr 合金具有较高的强度,其抗拉强度可达 370 MPa.

稀土镁合金不仅有着优异的时效沉淀强化作用,而且在 Mg-RE 系合金中加入少量的 Zn 可形成 长周期堆垛有序(long period stacking ordered, LPSO)结构^[11-12].含有长周期有序堆垛相的合金, 特别是 Mg-RE-Zn 合金,在经塑性变形后,能够使长 周期结构在合金中均匀分布,同时细化基体晶粒,从 而极大地提高合金的强度和塑性,展示出极其优异 的室温和高温力学性能^[13-16].

本研究以高性能镁合金材料需求为导向,开发 了新型 Mg-Gd-Er-Zn 高强稀土变形镁合金材料,并 对合金的热处理和热挤压工艺、微观组织、力学性能 及强化机制等展开研究.

1 实验方法

本文研究的合金铸锭采用常规熔炼铸造工艺制备.合金原料采用商用纯镁(w = 99.99%)、她锌 (w = 99.99%)、Mg-Gd(w = 30%)中间合金、Mg-Er (w = 30%)中间合金、Mg-Zr(w = 30%)中间合金, 上述合金锭打磨去除掉表面氧化皮后,在配有 SF₆ + N₂保护气氛的井式坩埚电阻炉中完成熔炼. 首先,将坩埚在 200 ℃预热烘干后升温至 700 ℃,在 纯镁熔化后顺序加入 Mg-Gd、Mg-Er 中间合金;其 次,将合金熔体升温至 720 ℃并保温 15 min,然后加 入 Zn 合金和 Mg-Zr 中间合金,搅拌均匀化和保温; 最后,将合金熔体温度调整至 680 ℃并浇铸于预热 至 200 ℃的金属模中,获得 Mg-Gd-Er-Zn 稀土镁合 金铸锭.将获得的镁合金铸锭依次经固溶、热挤压 和时效工艺后,获得高性能 Mg-Gd-Er-Zn 变形镁合 金棒材.

利用 Magix-PW2403 型 X 射线荧光光谱仪分析 合金成分,结果为 Mg97.69 Gd1.60 Er0.27 Zn0.20 Zr0.25.利 用 D/MAC-3C 型旋转阳极 X 射线衍射仪,分析不同 状态下合金的相组成.利用 Netzsch STC449C 热分 析仪研究铸态合金熔化过程中的吸热、放热特性,以 合金不发生过烧和保证第 2 相充分固溶为前提,确 定合金的固溶温度和时间.利用 Y32 型 100 t 液压 机对固溶态镁合金坯料进行热挤压,热挤压温度为 400 ℃,挤压比为 10:1,对热挤压棒材进行水淬处 理.挤压态镁合金棒材的时效温度设定为 225 ℃, 其时效时间通过时效硬化曲线确定.时效态合金样 品的显微硬度在 HXD-1000 显微硬度测试仪上进 行测试,每个试样至少测试 10 个点,并取其平均值 作为该状态样品的硬度.

铸态、固溶态、挤压态和时效态镁合金试样经磨制、抛光和 5% 硝酸酒精腐蚀后,利用 Zeiss Axio Imager A2m 光学显微镜、HITACHI S3400N 型扫描 电镜及能谱分析仪(energy-dispersive spectrometry, EDS)附件观察其显微组织,并分析其晶粒尺寸及第 2 相尺寸、形貌、成分等.利用 JEM-2100 型透射电镜分析合金时效态的高分辨显微形貌及析出相.利用 UTM-4304 型万能材料试验机测试合金的力学性能,力学拉伸试样的直径为 5 mm,标距为 25 mm, 试样的拉伸速度为 1 mm/min.

2 实验结果及讨论

2.1 铸态合金的热分析

图 1 为铸态合金的热分析曲线,根据差热分析 (differential scanning calorimetry, DSC)曲线可以发 现合金在升温过程中出现了 2 个吸热峰,如图 1 中 A、B 所示.其中第 1 个吸热峰 A 为(Mg,Zn)₃Gd 的

12 h.

熔化吸热峰,其起点温度为 523.1 ℃、终点温度为 532.1 ℃、峰值温度为 527.2 ℃;第 2 个吸热峰 B 为 α-Mg 的熔化吸热峰,其起点温度为 581.1 ℃、终点 温度为 639.2 ℃、峰值为 633.4 ℃.综合上述分析结 果,为避免合金中第 2 相过烧,将合金的固溶温度定 为 500 ℃,该温度略低于第 2 相的分解温度,从而保 证了整个热处理过程处于固态相变范围.为使合金 中的第 2 相得到充分溶解,设定合金的固溶时间为

2.2 合金的时效硬化特性

热挤压态合金在 225 ℃的时效硬化曲线如图 2 所示. 从图 2 可看出,所研究合金在 225 ℃时效温 度下有明显的时效硬化效果,其硬度值随时效时间 的延长而不断增加,当时效时间达到 48 h 时,合金 出现了一个时效硬化峰值,再延长时效时间,合金的 硬度并未有显著增加. 因此,在后续的时效工艺中, 设定峰时效处理时间为 48 h.

图 2 挤压态合金在 225 ℃的时效硬化曲线

Fig. 2 Ageing hardening curves of the as-extruded alloy at 225 $^{\circ}\!\!\mathrm{C}$

2.3 合金的显微组织

图 3(a)为铸态合金的 SEM 形貌, B 点所示为 (Mg, Zn)₃Gd 相,主要沿晶界析出,呈网格状分布, 与 α-Mg 相形成共晶组织^[17].同时,可以观察到 (Mg, Zn)₃Gd 相周围存在大量的浅灰色絮状结构, 该絮状结构由晶界向晶内延伸,平行分布于基体中 与基体没有清晰的界面.对图 3(a)中 A 点所示层 片状结构进行成分分析,其结果如图 3(b)所示, (Mg, Zn)与(Gd, Er)的原子比约为 98:2,根据相关 研究结果,该组织由 2H-Mg 与 14H-LPSO 结构 组成^[18-19].

为了消除铸态合金中粗大的(Mg,Zn)₃Gd 相以 及成分偏析,铸态合金经500℃和12h固溶处理后, 显微组织形貌如图4所示.分析表明,固溶之后的

(a) SEM形貌

晶粒平均尺寸为26μm,铸态合金中呈网格状分布的(Mg,Zn)₃Gd 相基本消失,但在固溶态晶界附近出现大量片层状结构,这些片层状结构为14H-LPSO 结构,该结构在铸态中出现^[20].

研究指出,14H-LPSO 结构形成的方式有 2 种: 第 1 种为合金在凝固冷却过程中 Mg、Gd 和 Zn 原子 发生调幅分解,导致晶格点阵发生错排,进而形成堆 垛结构,当动力学和热力学条件满足时,在过饱和固 溶体中形成层片状结构,即 14H-LPSO;第 2 种为固 溶过程中(Mg, Zn)₃Gd 相发生固态相变转变成 LPSO 结构.在晶内和晶界形成的 14H-LPSO 具有优 异的高热稳定性和塑性变形能力,有利于提高合金 的强度和塑性甚至超塑性[21].

图 5(a)为经固溶、热挤压,并进行 225 ℃ ×48 h 峰时效处理的合金光学显微组织.从图 5(a)可以 看出,最终获得的高强镁合金晶粒尺寸非常细小,平 均晶粒尺寸为 10 µm,与固溶态合金的晶粒尺寸相 比较明显发生细化,挤压后的晶粒近似等轴状,表明 在前序的热挤压中合金发生了动态再结晶.合金在 热挤压变形过程中,层片状 LPSO 发生塑性变形,均 匀分布于基体中,位错运动受到 LPSO 颗粒的钉扎 而产生塞积,使合金产生形变强化.结合 XRD 衍射 图谱可知,合金固溶处理后得到的 LPSO 结构是一 个热稳相,在合金经过挤压和时效工艺后依然存在, 但是热挤压态与峰时效态合金的相并没有发生明显 变化,这主要是由于时效析出相较少,导致 XRD 图 谱中衍射峰不明显.

(a) 显微组织

Fig. 5 OM microstructure of the peak-aged alloy and XRD patterns of as-extruded and peak-aged alloy

图 6 为合金在峰时效后的 TEM 形貌. 从 图 6(a)可以发现,峰时效后镁合金基体中 LPSO 结 构与 β'相的共存. 如前所述,LPSO 结构是一种热稳 态相,在后续的热挤压、时效等工艺中可稳定存在. 因此,合金在发生动态再结晶的热挤压过程中, LPSO 相可以通过钉扎晶界产生显著的细晶强化作 用,而且在合金时效过程中 LPSO 相也将阻碍 β′相 的粗化,有效提高 β′相的时效强化效果^[22].

合金峰时效析出相的高分辨 TEM 形貌如 图 6(b)所示. 从图 6(b)可以发现,峰时效态合金 中的析出相的尺寸较小,约为 10 nm,整体呈现椭球 型. 利用 SAED 图谱分析时效析出相的结构特征, 选区电子衍射图谱的电子束入射方向平行于 [0001]_{Mg},可以观察到除了基体明锐的衍射斑点之 外,在镁基体(0001)面 1/4、1/2、3/4 的位置处出现 了弱衍射斑,该相具有底心正交结构,晶格常数为 $a = 2a(\alpha - Mg) = 0.642$ nm, $b = 4\sqrt{3}a(\alpha - Mg) = 2.224$ nm, $c = c(\alpha - Mg) = 0.512$ nm,也和基体完全共格,位 向关系为〈001〉_{β'} // 〈0001〉_α, {100}_{β'} // {1120}_α^[23]. 因此,由于时效过程中尺寸细小的 β' 相大量析出且较为均匀地分布在合金基体中,将使 合金在塑性变形过程中有效地阻止位错运动,从而 显著地提高合金的力学性能.

(a) TEM形貌

(b) 析出相形貌与SAED图谱

- 图 6 合金峰时效后 LPSO 结构与 β′相在 Mg 基体中共存 以及峰时效处理后析出相形貌及 SAED 图谱
- Fig. 6 Co-existence of LPSO structure and β' phase in matrix of peak-aged alloy and precipitate phase and SAED pattern of peak-aged alloy

2.4 合金的力学性能

图 7 为合金热挤压态和时效态的室温力学性 能.合金挤压态的室温平均力学性能为 R_m = 306.0 MPa, $R_{p0.2}$ = 234.0 MPa, A = 10.6%,硬度值为 81 Hv;合金时效态的室温平均力学性能为 R_m = 397.5 MPa, $R_{p0.2}$ = 359.0 MPa, A = 6.0%,硬度值为 104 Hv.对比 2 种状态的力学性能可知,所研究合金具 有良好的时效强化效果,合金热挤压后的时效态力 学性能显著高于热挤压态合金的力学性能.与热挤 压态相比,合金时效后的抗拉强度、屈服强度分别提 高了 27.0%、53.8%,同时伸长率虽有一定程度降 低但仍高于 5.0%.

Fig. 7 Room temperature mechanical properties of the alloy at as-extruded and as-aged

综合前述合金铸态、固溶态、热挤压态及时效态 微观组织和力学性能的演变规律,分析认为最终时 效态合金力学性能的提高主要原因有以下几个方 面:1)热挤压过程中合金发生了动态再结晶,获得 了细小的再结晶晶粒,根据 Hall-Patch 公式

$$\sigma_{\rm x} = \sigma_0 + K \times d^{-1/2} \tag{1}$$

式中: σ_y 为屈服强度; σ_0 为单晶体的屈服强度;K为 常数,d为晶粒尺寸.由式(1)可知,晶粒越细小,材 料强度越高.而挤压后的合金晶粒尺寸由 26 µm 减 小到 10 µm,可显著地提高合金的屈服强度.2)铸 态粗大的(Mg,Zn)₃Gd 相易于形成裂纹源,而经固 溶处理后的上述(Mg,Zn)₃Gd 相基本消失,新生成 的 LPSO 结构是有效强化相,可提高合金的塑性变 形能力,同时经挤压后的 LPSO 结构弥散分布于基 体,可阻碍位错运动产生形变强化,提高合金强度. 3)时效过程中,由于 LPSO 相的存在可钉扎位错阻 碍析出相的进一步长大,获得纳米尺寸的 β'相,细 小的 β'相弥散分布于基体中,当合金受到外载荷作 用时,位错将与时效析出相发生交互作用,位错运动 受到阻碍,从而提高了合金的强度.

3 结论

1) 开发了高性能 Mg-Gd-Er-Zn 变形镁合金材料,室温平均力学性能为 R_m = 397.5 MPa, R_{p0.2} = 359.0 MPa, A = 6.0%.

2) 铸态 Mg-Gd-Er-Zn 合金固溶处理后,形成沿 晶界析出的层片状的 LPSO 结构,该结构可在挤压 过程中有效钉扎晶界产生细晶强化作用;Mg-Gd-Er-Zn 合金具有良好的时效硬化效果,在热挤压后的时 效过程中有大量纳米级时效相 β′析出.

3) Mg-Gd-Er-Zn 合金中 LPSO 结构与时效强化 相 β'的共存,实现了二者共同强化的效果.

参考文献:

- 梁艳,黄晓锋,王韬,等.高强镁合金的研究状况及发展趋势[J].中国铸造装备与技术,2009(1):8-12.
 LIANG Y, HUANG X F, WANG T, et al. The research status and development trend of high strength magnesium alloys [J]. China Casting Equipment and Technology, 2009(1):8-12. (in Chinese)
- [2] 陈晓强,刘江文,罗成萍. 高强度 Mg-Zn 系合金的研究 现状与发展趋势[J]. 材料导报, 2008, 22(5): 58-62.
 CHEN X Q, LIU J W, LUO C P. Research status and development trend of Mg-Zn alloys with high strength[J].
 Material Review, 2008, 22(5): 58-62. (in Chinese)
- [3] 张丁非,齐福刚,赵霞兵,等. Mg-Zn 系高强度镁合金的研究进展[J]. 重庆大学学报,2010,33(11):53-61.

ZHANG D F, QI F G, ZHAO X B, et al. Research progress of high strength Mg-Zn series alloys [J]. Journal of Chongqing University, 2010, 33 (11): 53-61. (in Chinese)

- [4] 程素玲,杨根仓,樊建峰,等.铸造镁合金的发展及其展望[J].材料导报,2005,19(2):91-97.
 CHENG S L, YANG G C, FAN J F, et al. The development of casting magnesium alloy and its prospects
 [J]. Material Review, 2005, 19(2):91-97. (in Chinese)
- [5] 余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-287.
 YUK,LIWX,WANGRC, et al. Magnesium alloy in the research, development and application [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(2):277-287. (in Chinese)
- [6] TONG L B, LI X H, ZHANG H Y. Effect of long period stacking ordered phase on the microstructure, texture and

mechanical properties of extruded Mg-Y-Zn alloy [J]. Materials Science and Engineering A, 2013, 563: 177-183.

- [7] 张景怀,唐定骧,张洪杰,等.稀土元素在镁合金中的作用及其应用[J].稀有金属,2008,32(5):659-667.
 ZHANG J H, TANG D X, ZHANG H J, et al. The role of rare earth elements in magnesium alloy and its application [J]. The Chinese Journal of Nonferrous Metals, 2008, 32 (5):659-667. (in Chinese)
- [8] 刘楚明,郑梁,王松涛,等.高强变形镁合金研究现状及发展趋势[J]. 宇航材料工艺,2012(1):8-12.
 LIU C M, ZHENG L, WANG S T, et al. Research status and development tendency on high strength wrought magnesium alloys [J]. Aerospace Material Process, 2012 (1):8-12. (in Chinese)
- [9] GAO Y, WANG Q D, GU J H, et al. Effects of heat treatment on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy [J]. Rare Earths, 2008, 26 (2): 298-302.
- [10] 彭卓凯,张新明,陈健美,等. Mn, Zr 对 Mg-Gd-Y 合金组织与力学性能的影响[J].中国有色金属学报,2005,15(6):917-922.

PENG Z K, ZHANG X M, CHEN J M, et al. Effects of Mn, Zr on microstructure and properties of Mg-Gd-Y alloys[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(6): 917-922. (in Chinese)

- [11] CHI Y Q, ZHENG M Y, XU C, et al. Effect of ageing treatment on the microstructure, texture and mechanical properties of extruded Mg-8. 2Gd-3. 8Y-1Zn-0. 4Zr (wt%) alloy [J]. Materials Science & Engineering A, 2013, 565: 112-117.
- [12] 张松,袁广银,卢晨,等.长周期结构增强镁合金的研究进展[J].材料导报,2008,22(2):61-81.
 ZHANG S, YUAN G Y, LU C, et al. Research progress in Mg-based alloys reinforced by long-period ordered structure[J]. Material Review, 2008, 22(2):61-81. (in Chinese)
- [13] XU C, ZHENG M Y, WU K, et al. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg-Gd-Y-Zn-Zr alloy [J]. Materials Science & Engineering A, 2013, 559: 364-370.
- [14] XU C, ZHENG M Y, XU S W, et al. Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing [J]. Materials Science & Engineering A, 2015, 643: 137-141.
- [15] ZHANG S, LIU W C, GU X Y, et al. Effect of solution

and ageing treatments on the microstructures evolution and mechanical properties of Mg-14Gd-3Y-1.8Zn-0.5Zr alloy [J]. Journal of Alloys and Compounds, 2013, 557:91-97.

- [16] 曾小勤,吴玉娟,彭立明,等. Mg-Gd-Zn-Zr 合金中的 LPSO 结构和时效相[J]. 金属学报, 2010, 46(9): 1041-1046.
 ZENG X Q, WU Y J, PENG L M, et al. LPSO structure and aging phase in Mg-Gd-Zn-Zr alloy [J]. Acta Metallurgica Sinica, 2010, 46(9): 1041-1046. (in Chinese)
- [17] WEN K, LIU K, WANG Z H, et al. Effect of microstructure evolution on mechanical property of extruded Mg-12Gd-2Er-1Zn-0. 6Zr alloys [J]. Journal of Magnesium and Alloy, 2015(3): 23-28.
- [18] ZHU Y M, MORTON A J, NIE J F. Growth and transformation mechanisms of 18R and 14H in Mg-Y-Zn alloys[J]. Acta Materialia, 2012(60): 6562-6572.
- [19] LIU K, ZHANG J H, LU H Y, et al. Effect of the long periodic stacking structure and W-phase on the microstructures and mechanical properties of the Mg-8GdxZn-0. 4Zr alloys[J]. Materials and Design, 2010(31): 210-219.
- [20] WU Y J, LIN D L, DING W J. Formation of a lamellar 14H-type long period stacking ordered structure in an ascast Mg-Gd-Zn-Zr alloy [J]. Mater Sci, 2009 (44): 1607-1612.
- [21] 孟令刚. Mg-Gd-Y-Zn-Zr 合金长周期结构形成机制与 组织性能研究[D]. 沈阳:大连理工大学, 2014.
 MENG L G. Researches on formation mechanism of the LPSO structure, microstructures and mechanical properties of the Mg-Gd-Y-Zn-Zr alloys[D]. Shenyang: Dalian University of Technology, 2014. (in Chinese)
- [22] 李扬欣. 稀土镁合金中的长周期堆垛有序结构相及其 对组织与性能的影响[D]. 上海:上海交通大学, 2014.

LI Y X. The effect of long period stacking ordered phase on mechanical properties in magnesium alloys containing rare earth elements [D]. Shanghai: Shanghai Jiao Tong University, 2014. (in Chinese)

[23] LI Y X, QIU D, RONG Y H, et al. TEM study on the microstructural evolution in an Mg-Y-Gd-Zn alloy during ageing[J]. Intermetallics, 2013(40): 45-49.

(责任编辑 吕小红)