锂离子电池健康状态估计方法

冯能莲¹,陈龙科¹,汤 杰²

(1.北京工业大学环境与能源工程学院,北京 100124; 2.安徽吴方机电股份有限公司,安徽 蚌埠 233010)

摘 要:为研究动力锂离子电池的健康状态(state of health SOH) 根据 SOH 和荷电状态(state of charge SOC)的定 义以及电池的二阶电阻电容(resistance-capacitance RC)等效电路模型,建立了基于恒流充电阶段电池电压曲线的 SOH 估计模型.通过分析电池循环寿命测试数据,利用恒流充电阶段电池电压曲线对 SOH 进行估计,并与试验数 据进行了对比,在 SOH 值衰减至 80% 之前,SOH 估计的相对误差均在 ±2% 范围内,能较好地吻合试验结果.结果 表明:所提出的估计方法具有可行性和精确性.

关键词: 锂离子电池; SOH 估计; 电压曲线
 中图分类号: TM 912
 文献标志码: A
 doi: 10.11936/bjutxb2016010065

文章编号: 0254-0037(2016) 11-1750-06

Methods for SOH Estimation of Li-ion Battery

FENG Nenglian¹, CHEN Longke¹, TANG Jie²

(1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China;
 2. Anhui Haofang Mechanical and Electrical Stock Company Limited, Bengbu 233010, Anhui, China)

Abstract: To study lithium ion battery state of health (SOH), according to the definitions of SOH and state of charge (SOC) and 2RC (resistance-capacitance) battery equivalent circuit model, the SOH estimation model of the battery voltage curve based on the constant current charging stage was established. Based on the analysis of the battery cycle life test data, the SOH was estimated by the battery voltage curve of the constant current charging stage and compared to the testing data. The relative error of SOH estimation was in the range of 2% before the SOH value was reduced to 80%, which was well consistent with the experimental results. The results show that the proposed method is feasible and accurate.

Key words: lithium ion battery; state of health (SOH) estimation; voltage curve

电池状态监控技术是电动汽车电池管理系统 (battery management system,BMS)的核心技术之 一^[1].快速、准确地监测和控制电池的参数及状态 也是衡量 BMS 研发及生产者实力的最直接的指 标^[2].目前,电池健康状态(state of health SOH)估 计研究是其相对薄弱的环节,而对 SOH 进行精准地 监测和预测,能够提高荷电状态(state of charge, SOC)估计精度,以防止过充/过放、预测状态的演变 以及估计其他性能状态.此外,对于能量管理系统 任务决策、减少安全隐患、防止灾难事故的发生也具 有重要意义.

锂离子电池 SOH 估计的主要方法有直接放电 法、内阻法、电化学阻抗分析法、模型法、电压曲线模 型法^[3-5].其中,直接放电法是目前唯一公认利用负 载对单体电池 SOH 评价的可靠方法,但该方法需要 离线测试电池的 SOH,对车用动力电池来说实现困

收稿日期: 2016-01-28

基金项目:国家自然科学基金资助项目(51075010);北京市教育委员会重点资助项目(KZ200 910005007)

作者简介:冯能莲(1962—),男,教授,主要从事新能源汽车、智能车辆、汽车电子方面的研究 E-mail: fengnl@ bjut. edu. cn

难,另外,测试负载较笨重,操作不方便;内阻法主要 通过建立内阻与 SOH 之间的关系来估算 SOH 由于 电池内阻比较小 准确测量比较困难 这种方法还没 有得到实际的应用; 电化学阻抗分析法的主要思想 是向电池施加多个正弦信号,然后运用模糊理论对 已采集到的数据信息分析 预测电池的当前性能 需 要做大量的数据采集与分析才能获取此款电池的特 性,另外,还依赖诸多阳抗及阳抗谱的理论知识,性 价比较低;模型法是分析电池内部所发生的化学反 应 以此为基础建立电池模型 进而计算电池容量的 衰减 得到电池的 SOH 这种方法需要对电池内部 的化学反应进行详尽分析,并需知道电池的有关参 数,而且需要做大量关于电池寿命的试验,难度较 大,耗时较长.相对而言,电压曲线模型法建模简 单 不需要电池的固有参数和做大量的试验 成本 低,估算精确高.

本文基于恒流充电阶段电池电压曲线并结合二 阶 RC 等效电路模型,给出了一种对单体锂离子电 池 SOH 的估计方法,并通过试验数据验证了该估计 方法的合理性和有效性.

1 锂离子电池测试条件和数据获取

试验用电池的额定容量为1.1 A•h,正极为含 有少量锰的钴酸锂材料,电池质量为21.1g,长、宽、 高分别为50.0、33.8、6.6 mm,基于该锂离子电池的 循环寿命测试试验,建立了数据库以备分析^[68].在 循环寿命测试中,环境温度为常温,充电方式均为恒 流-恒压(CC-CV)方式,即以0.5 C 恒流充电,直至 电池电压达到充电截止电压4.2 V,之后继续维持 以4.2 V 恒压充电,直至充电电流减小至0.05 A 时 停止充电,此时视电池已充满;以0.5 C 恒流放电, 放电截止电压为2.7 V.

2 锂离子电池 SOH 估计

2.1 SOH 定义

对于纯电动汽车,通常当动力电池容量下降至 额定容量的80%时,功率依旧可以达到一定的性能 要求;而当电池的容量下降至额定容量的80%之 后,认为动力电池的寿命终止.因此,在纯电动汽车 动力电池的SOH估计中,一般只将容量作为其评价 指标.定义^[9]如下:

$$SOH = \frac{C_{\text{now}}}{C_{\text{rate}}} \times 100\%$$
 (1)

式中: C_{rate}表示额定容量; C_{now}表示电池当前最大可

用容量,它可以是在额定条件下所测得的,或是在当前使用条件下所测得的,而由于可逆容量的存在,当前测试条件改变时所测得的 *C*_{now}值一般并不相等,进而导致所得 SOH 的值也不相同.

电池的 SOC 用来表示当前的剩余可用电量占 最大可用电量的百分比^[10].通过以容量评价 SOH 的定义,可以得到 SOC 定义的形式如下:

$$SOC = \frac{Q_{\text{nowre}}}{Q_{\text{now}}} \times 100\%$$
 (2)

式中: *Q*_{now}为当前最大可用电量,对应于当前*C*_{now}; *Q*_{nowre}为当前的剩余可用电量,对应于当前*C*_{now}中所 剩余的电量.

2.2 SOH 估计模型建立

电池在不同 SOH 下,通过 0.5 C 恒流恒压充电 方式进行充电 0.5 C 恒流放电,对应的恒流充电阶 段的电池电压曲线如图 1 所示.

从图1中可以发现:每一条恒流充电阶段电池 电压曲线都非常相似,即电池在逐渐的老化过程中, 相对应的恒流阶段的充电曲线逐渐向左上方缩移, 充电的时间不断缩短,而电压"平台"也在渐渐地 上升.

从外特性角度看,电池的 SOC(或电压) 主要受 其内部参数以及初始状态等影响,其中容量影响最 为显著^[1142].因此,对电池内部参数及状态的研究 为基于电压曲线的电池状态估计提供了可靠依据. 基于以上认识,通过对恒流恒压充电方式下恒流阶 段电压曲线的规律性现象的研究,以完成 SOH 估计.

在建立电池模型时,不仅要求模型能够真实反 映电池的动态特性,同时也要考虑模型的复杂程度 以及实时性等,以满足工程实际应用的要求.常用 的电池模型包括简化的电化学模型、等效电路模型、

神经网络模型和特定因素模型等 其中 因等效电路 模型的物理意义清晰、便于数学分析和进行参数辨 识等特点而得到广泛应用^[13].常见的等效电路模 型主要有线性模型、戴维南模型、PNGV(partnership for a new generation of vehicles) 模型、四阶动态电路 模型、二阶 RC 电路模型. 其中 线性模型属于理想 模型,并没有考虑外界因素对电池的影响;戴维南模 型由于没有考虑到外界温度对电池内阳的影响 对 电池 SOH 估算的实时性和准确性不高; PNGV 模型 的内阻参数和电池直流内阻较为准确,但在不同温 度环境下的表现却不尽人意; 四阶动态电路模型具 有较高的阶数和精确度 但工程实现上很难 运算要 求也很难实现; 二阶 RC 电路模型虽然相较于一阶 模型有较大的计算量,但是模型精确度能够大大提 高^[14] 相对于精度而言, 裡离子电池的 SOH 估算对 实时性的要求不敏感. 经过对多个模型的分析,本 文采用等效电路模型中二阶 RC 模型,如图 2 所示.

Fig. 2 Equivalent circuit model with double RC

二阶 RC 模型电路结构包括: 理想电压源 U_{oc} 表示电池的开路电压,描述正负两极稳定电位之差; 电阻 R_0 表示电池动力学行为的动态物理阻抗效应,对应于充放电过程的欧姆内阻; 2 个并联 RC 电路的串联,分别用来描述电池不同时间常数的极化现象阻抗效应,其中,电阻 R_1 和 R_2 分别表示时间常数较长和较短的极化电阻; C_1 和 C_2 则表示对应的极化电容; 电流 I 表示流经欧姆内阻 R_0 的电流; 电压 U 表示有负载时的输出电压或端电压,并规定放电电流符号取页.

基于图 2 所示的二阶 RC 模型,根据基尔霍夫 定律可以得到锂离子电池的充电特性,即输出电压 U 与输入电流 I 的数学关系为

$$U = U_{\rm oc} - U_1 - U_2 + IR_0 \tag{3}$$

式中 U_1 、 U_2 为初始的极化电压 ,所有变量取正值.

由于等效电路模型能够很好地描述动力电池的 外部特性,同时根据开路电压 U_{oc}与 SOC 的关系并 结合式(3) 可以得到

$$U(\text{ SOC } t) = U_{\text{oc}}(\text{ SOC}) - U_1 \exp^{-\frac{t}{\tau_1}} + IR_1(1 - \exp^{-\frac{t}{\tau_1}}) - U_2 \exp^{-\frac{t}{\tau_2}} +$$

$$IR_{2}(1 - \exp^{-\frac{t}{\tau_{2}}}) + IR_{0}$$
 (4)

整理可得

$$U(\text{ SOC } t) = U_{\text{oc}}(\text{ SOC}) - (U_1 + IR_1) \exp^{-\frac{t}{\tau_1}} - (U_2 + IR_2) \exp^{-\frac{t}{\tau_2}} - I(R_0 + R_1 + R_2)$$
(5)

式中 U_{∞} (SOC) 表示开路电压是 SOC 的函数 随着 SOC 的增加 U_{∞} (SOC) 呈现非线性、单调增加的趋势.

根据式(2),同一块电池在不同的老化状态,相同的 SOC 下可以得到关系式

SOC = SOC' =
$$\frac{lt' + C_s'}{C_u'} = \frac{lt + C_s}{C_u}$$
 (6)

易得

$$t = \frac{C_{\rm u} \text{SOC} - C_{\rm s}}{I} \tag{7}$$

$$t' = \frac{C_u^{\circ} \text{SOC}' - C_s^{\circ}}{I}$$
(8)

式中: C_s 为剩余可用电量; C_u 为最大可用容量; t 表示对应于 t 在不同老化状态下 SOC 相同时的值. SOC $\langle C_s \rangle C_u$ 则分别对应于 SOC $\langle C_s \rangle C_u$ 在不同老化状态时的值.

由式(5)~(8)可以得到如下形式的方程:	
$U(\text{ SOC}) = U_{\text{oc}}(\text{ SOC}) -$	
$(U_1 + IR_1) \exp^{-\frac{C_u}{\tau_1 I} \text{SOC}} \exp^{\frac{C_s}{\tau_1 I}} -$	
$(U_2 + IR_2) \exp^{-\frac{C_u}{\tau_2 I} \text{SOC}} \exp^{\frac{C_s}{\tau_2 I}} +$	
$I(R_0 + R_1 + R_2)$	(9)
$U(\text{ SOC}) = U'_{\text{oc}}(\text{ SOC}) -$	
$(U_1 + IR_1) \exp^{-\frac{C_0}{\tau_1 I} \operatorname{SOC}} \exp^{\frac{C_s}{\tau_1 I}} -$	
$(U_2 + IR_2) \exp^{-\frac{C_1}{\tau_2 r^2} SOC} \exp^{\frac{C_2}{\tau_2 r}} +$	
$I(R_0 + R_1 + R_2)$	(10)

式中 $R_0 \ R_1 \ R_2 \ U_1 \ U_2 \ \tau_1 \ \tau_2 \ U_{oc}$ (SOC) 分别表示对 应于 $R_0 \ R_1 \ R_2 \ U_1 \ U_2 \ \tau_1 \ \tau_2 \ u_{oc}$ (SOC) 在不同老化 状态时的值.

根据文献 [15],在一定的误差范围内,可认为 开路电压 U_{oc}(SOC)只随 SOC 的变化而变化. 实际 上 影响开路电压的因素还有:构成电池两极体系的 性质、电极材料、溶液组成与质量浓度、温度、电极界 面状态、工艺配方及工艺过程等^[16]. 因此,对于同 一块电池.在温度变化不大、老化不严重的情况下, 认为电池开路电压在老化过程中基本不变;并且认 为 R₀、R₁、R₂ 在恒流充电阶段为定值,仅随循环次数 的增加而改变. 即

充电时电池电压与 SOC 的关系表达式为

$$U'(SOC) - U(SOC) = (U_1 + IR_1) \exp^{-\frac{C_u}{\tau_1 I^SOC}} \exp^{\frac{C_s}{\tau_1 I}} + (U_2 + IR_2) \exp^{-\frac{C_u}{\tau_2 I^SOC}} \exp^{\frac{C_s}{\tau_2 I}} - (U_1' + IR_1') \exp^{-\frac{C_u}{\tau_1 I^SOC}} \exp^{\frac{C_s}{\tau_1 I}} - (U_2' + IR_2') \exp^{-\frac{C_u}{\tau_2 I^SOC}} \exp^{\frac{C_s}{\tau_2 I}} + I(R_0' + R_1' + R_2' - R_0 - R_1 - R_2)$$
(12)
由式(4)(5)可以进一步得到

$$t = \frac{C_{u}}{C_{u}} \left(t' + \frac{C_{s}}{I} \right) - \frac{C_{s}}{I}$$
(13)

由式(6)(12)(13)可以得到

$$U'(t') = U(t) + (U_1 + IR_1) \exp^{-\frac{1}{\tau_1 t}} + (U_2 + IR_2) \exp^{-\frac{1}{\tau_2 t}} - (U_1' + IR_1') \exp^{-\frac{1}{\tau_1 t'}} - (U_2' + IR_2') \exp^{-\frac{1}{\tau_2 t'}} +$$

$$I(R_0' + R_1' + R_2' - R_0 - R_1 - R_2)$$
(14)

一般以第1次充放电循环中恒流充电阶段的电 压曲线 U(t) 作为基准,并且电池可用容量已知.在 恒流充电获取 U(t) 曲线前,应使初始电池的 SOC 尽量小,即 $C_s \approx 0$.为方便 SOH 的估计,令

$$a_{1} = U_{1} + IR_{1}; b_{1} = -\frac{1}{\tau_{1}}; c_{1} = U_{1}' + IR_{1}'$$

$$a_{2} = U_{2} + IR_{2}; b_{2} = -\frac{1}{\tau_{2}}; c_{2} = U_{2}' + IR_{2}'$$

$$d_{1} = -\frac{1}{\tau_{1}}; d_{2} = -\frac{1}{\tau_{2}}; \Delta t = \frac{C_{s}'}{I}; k = \frac{C_{u}}{C_{u}'}$$

$$e = I(R_{0}' + R_{1}' + R_{2}' - R_{0} - R_{1} - R_{2})$$
(15)

由此可以得到 在不同老化程度下 恒流充电阶 段电池电压曲线的数学模型为

$$U'(t') = U(k(t' + \Delta t)) + a_1 \exp^{b_1 k(t' + \Delta t)} + a_2 \exp^{b_2 k(t' + \Delta t)} - c_1 \exp^{d_1 t'} - c_2 \exp^{d_2 t'} + e$$
(16)

由于在一次恒流阶段充电过程中,式中 $a_1 \ x_2 \ x_1 \ x_2 \ x_1 \ x_2 \ x_1 \ x_2 \ x_2$

2.3 估计模型参数辨识

通过对 SOH 在 100% 时的恒流充电阶段的电池 电压数据进行处理,可以得到一条恒流阶段电池电 压曲线,并以此作为模型的基准线,如图 3 所示.本 文提出的基准曲线的选取方法,比传统的通过归一 化处理电池电压曲线包围坐标轴的面积来选取所需 的基准曲线的方法^[17]更加简单且易于实现实车动

Fig. 3 Benchmark charging profile

根据文献 [18] 中的方法,可以得到基准线的电压 U(t) 与时间t的函数关系

$$U(t) = -0.34 \exp^{-30.81 t} - 0.11 \exp^{1.46 t} +$$

 $0.\ 36t^3 - 0.\ 45t^2 + \ 0.\ 68t + \ 3.\ 86 \tag{17}$

将式(17) 带入方程(16) 中对基准电压曲线进 行拟合 此时 k、e、Δt 应该同时满足以下条件:

$$\begin{cases} k \to 1 \\ \Delta t \to 0 \\ e \to 0 \end{cases}$$

同时,当 $a_1 \approx c_1, b_1 \approx d_1, a_2 \approx c_2, b_2 \approx d_2$ 也满足 时便可以辨识出 a_1, a_2, b_1, b_2 的值并带入方程 (16),可得到恒流充电阶段电池电压曲线的数学模型,其一般形式为

 $U(t') = -0.34 \exp^{-30.81 k(t'+\Delta t)} - 0.11 \exp^{1.46 k(t'+\Delta t)} + 0.36k^3 (t'+\Delta t)^3 - 0.45k^2 (t'+\Delta t)^2 +$

0.
$$68t + 3.86 - 40.44 \exp^{-19.29 k(t' + \Delta t)}$$
 -

 $c_1 \exp^{d_1 t'} + 94.36 \exp^{-20.79 k(t' + \Delta t)} - c_2 \exp^{d_2 t'} + e$ (18)

从上述分析可以看出,本文所采用的二阶 RC 电路模型,不需要开路电压、剩余电量或阻抗等难以 准确获得的参数,也无需大量试验数据进行训练,甚 至不受使用工况影响.

3 估计结果与分析

对不同老化程度下的恒流充电阶段电池电压数 据进行拟合,其结果如图 4 所示.

进一步地 基于 SOH 估计模型,图 5、表1给出 了电池在不同老化程度下,对应的 SOH 实测值与估 计值以及相对误差.可以看到:在 SOH 值衰减至 80%之前,SOH的估算精度较为准确,相对误差均

图 4 不同 SOH 下的实测电压拟合曲线图

Fig. 4 Voltage curve fitting under different SOH

图 5 SOH 实测值与估计值以及相对误差

Fig. 5 Comparison of real and estimated values of SOH

表 1 SOH 实测值与估计值 Table 1 SOH real and estimated values %

SOH 实测值	SOH 估计值	估计相对误差
104. 56	105.76	1.14
99.62	100. 49	0.34
89.38	89.10	-0.31
80. 21	78.87	- 1. 67
67.25	62. 59	- 6. 93

在±2% 范围内,而文献[17]中的传统电压曲线拟 合估计 SOH 精度的相对误差最大达到 7%,加入自 适应算法的电压曲线拟合的估算精度最大也达到了 2.17%;而在 SOH 值衰减至 80% 之后,作为电动汽 车用动力电池的寿命终止,因此不进行讨论.这表 明 在电池容量衰减至 80% 之前,恒流充电阶段电 池电压曲线变化趋势非常相近,从而验证了 SOH 估 计结果的精确性.由于老化严重,在容量衰减至 80% 之后 温度、内阻等各种因素使恒流充电阶段电 池电压曲线在变化趋势上发生了较大改变,规律性 变弱,造成估计波动较大.为此可以考虑对基准线进行修正,以期望更好地估计精度.

以上 SOH 估计所使用的循环寿命测试数据为 每次采集数据时第 2 次循环测试数据,而从 SOH 估 计结果来看,该方法并不受 SOH 值与循环次数关系 曲线上"峰值"现象的影响,即该方法不受循环次数 和使用历史的影响,也反映了电池端电压及状态的 综合表现,进一步验证了估计模型的精确性和估计 方法的合理性和有效性.

4 结论

 基于单体电池二阶 RC 模型的 SOH 估计模 型复杂程度适中,既可以反映电池的动态特性,又能 满足电池管理系统的使用要求.

2) 在 SOH 值衰减至 80% 之前,所推导出的估 计模型是适用且准确的,所用的估计方法可行且有效.利用不同老化程度下恒流充电阶段电池电压曲 线并结合二阶 RC 电路模型,既不需要开路电压、剩 余电量或阻抗等实际工程上难以准确获得的参数, 也无需大量实验数据进行训练,甚至不受使用工况 影响.

 3)本文所用方法对其他类型电池的 SOH 估计 及工程应用具有一定的参考价值.

参考文献:

 张剑波,卢兰光,李哲.车用动力电池系统的关键技术 与学科前沿[J]. 汽车安全与节能学报,2012,3(2): 87-104.
 ZHANG J B, LU L G, LI Z. Key technologies and fundamental academic issues for traction battery systems [J]. Journal of Automotive Safety and Energy, 2012,3

(2): 87–104. (in Chinese)

- [2] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles [J]. Journal of Power Sources, 2013, 226(6): 272-288.
- [3] DAI H F , WEI X Z , SUN Z C. A new SOH prediction concept for the power lithium-ion battery used on HEVs [C] // IEEE Vehicle Power and Propulsion Conference. New Jersey: Piscataway , 2009: 1649-1653.
- [4] 徐文静. 纯电动汽车锂动力电池健康状态估算方法研究[D]. 长春: 吉林大学,2012:11-43.
 XU W J. Study onstate of health estimation algorithm for lithium power battery used on pure electric vehicle [D]. Changchun: Jilin University,2012:11-43. (in Chinese)
- [5] 戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体 不一致性问题研究综述[J]. 汽车工程, 2014, 36(2):

第11期

181-188.

DAI H F , WANG N , WEI X Z , et al. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles [J]. Automotive Engineering , 2014 , 36 (2): 181-188. (in Chinese)

- [6] XING Y, MA E W M, TSUI K L, et al. Battery management systems in electric and hybrid vehicles [J]. Energies , 2011 , 4(12): 1840–1857.
- [7] WILLIARD N, HE W, HENDRICKS C, et al. Lessons learned from the 787 dreamliner issue on lithium-ion battery reliability [J]. Energies, 2013, 6 (9): 4682– 4695.
- [8] XING Y, HE W, PECHT M, et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures [J]. Applied Energy, 2014, 113: 106-115.
- [9] 李勇,王丽芳,廖承林. 电动车锂离子电池健康状态模型研究进展[J]. 电源技术,2013,37(5):863-866. LIY,WANGLF,LIAOCL. Advances of state of health modeling of lithium-ion battery for electric vehicles [J]. Journal of Power Sources, 2013,37(5):863-866. (in Chinese)
- [10] 薛辉. 动力锂离子电池组 SOH 估计方法研究 [D]. 长春: 吉林大学, 2013: 2-3.
 XUE H. Theresearch on the method of power lithium-ion battery pack state of health estimation [D]. Changchun:
- Jilin University ,2013: 2-3. (in Chinese) [11] 陈强,李香龙,李雪,等. 单体参数差异对串联电池 组性能影响研究[J]. 电源技术,2013,37(11): 1947-1950.

CHEN Q , LI X L , LI X , et al. Influence of cell parameter differences upon series battery packs [J]. Journal of Power Sources , 2013 , 37 (11) : 1947-1950. (in Chinese)

[12] 孙万成,张建忠,杨清欣,等.容量差对电动工具用
锂离子电池组性能的影响[J].电源技术,2013,37
(4):552-554.

SUN W C , ZHANG J Z , YANG Q X , et al. Effect of capacity difference on performance of lithium ion battery pack for electric tools [J]. Journal of Power Sources , 2013 , 37(4): 552-554. (in Chinese)

[13] 张利,朱雅俊,刘征宇. 锂离子电池 SOC 与模型参数 联合估算研究[J]. 电子测量与仪器学报,2012,26 (4): 320-324.
ZHANG L, ZHU Y J, LIU Z Y. Research on joint estimation for SOC and model parameters of Li-ion battery

[J]. Journal of Electronic Measurement and Instrument, 2012, 26(4): 320-324. (in Chinese)

- [14] 彭飞. 锂离子电池状态估算方法研究与实现[D]. 西安: 电子科技大学,2014:14-16.
 PENG F. Research and realization of state estimation for lithium-ion batteries [D]. Xi'an: University of Electronic Science and Technology of China, 2014: 14-16. (in Chinese)
- [15] ABU-SHARKH S, DOERFFEL D. Rapid test and nonlinear model characterisation of solid-state lithium-ion batteries [J]. Journal of Power Sources, 2004, 130(1): 266-274.
- [16] 王力臻,项民,谷书华,等.开路电压及其影响因素
 [J]. 电池,1999,29(4):157-160.
 WANG L Z, XIANG M, GU S H, et al. Opencircuit voltage and its effect factors [J]. Battery Bimonthly, 1999,29(4):157-160. (in Chinese)
- [17] 张剑楠. 锂离子动力电池健康状态估计算法研究
 [D]. 长春: 吉林大学, 2015: 32-33.
 ZHANG J N. Study on state of health estimation of the lithium-ion battery [D]. Changchun: Jilin University, 2015: 32-33. (in Chinese)
- [18] CHEN M, RINCON-MORA G A. Accurate electrical battery model capable of predicting runtime and *I-V* performance [J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 504-511.

(责任编辑 梁 洁)